Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monkey see, monkey do?

21.03.2007
Novel study sheds light on imitation learning

What is the very best way to learn a complex task? Is it practice, practice, practice, or is watching and thinking enough to let you imitate a physical activity, such as skiing or ballet? A new study from Brandeis University published this week in the Journal of Vision unravels some of the mysteries surrounding how we learn to do things like tie our shoes, feed ourselves, or perform dazzling dance steps.

"What makes one person clumsy and the next person a prima ballerina is a combination of talent and practice," explains study co-author Robert Sekuler a neuroscientist at Brandeis" Volen Center for Complex Systems. "We are trying to determine what strategies will optimize imitation learning, which is crucial for acquiring many of the skills used in daily life. A lot of what we do we learn by watching and imitating others."

The study provides a first detailed look into explicit learning of sequential, non-verbal material. While many studies have evaluated serial recall of words, researchers have paid little attention to imitation learning, even though such learning is crucial to just about everything we do, from sports to regaining mobility after a stroke or accident.

"This study demonstrates that we can learn much better just by watching than previously thought, but it also suggests that there is more than meets the eye," says Yigal Agam, a neuroscience graduate student and study co-author. "Next we need to really understand how to optimize non-verbal imitative learning—to make that learning as fast, easy and painless as possible."

The study evaluated participants" ability to view, remember and then reproduce a complex sequence of motions generated by the random, unpredictable movements of a disc. Even a single repetition of a motion sequence substantially reduced errors in reproduction. To test how important it was to actually reproduce the motion, Sekuler and his colleagues compared the participants" performance when they reproduced the motion after each viewing to when they did so only once, after the final viewing, and otherwise just carefully observed and thought about the motion. Interestingly, performance was the same. Seeing the motion, without actually imitating it, was enough to learn it.

But leveraging a learner"s attention to the task at hand is also critically important. "It"s not simply a question of information falling on the retina—this kind of learning is a skill of acquiring information, transforming it into output, which is the imitation," says Agam.

Several strategies may help leverage a learner"s attention and motivate imitative learning. Organizing the motor skill practice is key. For example, Sekuler, an expert on the neural and cognitive terrain of visual memory, says that breaking down a behavioral sequence into chunks can aid imitation learning, just as chunking can help us memorize a string of seemingly unrelated digits or other material. Agam and Sekuler have their sights set on identifying strategies that teachers and coaches could use to make complex actions more "chunkable," and therefore easier to imitate.

For example, to promote chunking (and learning), a complex behavior can be paused at just the right time, which will help the novice viewer more easily appreciate and imitate the separate components of that behavior. The researchers" long-term goal is to devise simple methods that will allow teachers and coaches to take any arbitrary complex action that they want to teach—like that series of dance steps or that perfect golf swing, and then re-package that action into components that make for optimal learning.

Laura Gardner | EurekAlert!
Further information:
http://www.brandeis.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>