Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monkey see, monkey do?

21.03.2007
Novel study sheds light on imitation learning

What is the very best way to learn a complex task? Is it practice, practice, practice, or is watching and thinking enough to let you imitate a physical activity, such as skiing or ballet? A new study from Brandeis University published this week in the Journal of Vision unravels some of the mysteries surrounding how we learn to do things like tie our shoes, feed ourselves, or perform dazzling dance steps.

"What makes one person clumsy and the next person a prima ballerina is a combination of talent and practice," explains study co-author Robert Sekuler a neuroscientist at Brandeis" Volen Center for Complex Systems. "We are trying to determine what strategies will optimize imitation learning, which is crucial for acquiring many of the skills used in daily life. A lot of what we do we learn by watching and imitating others."

The study provides a first detailed look into explicit learning of sequential, non-verbal material. While many studies have evaluated serial recall of words, researchers have paid little attention to imitation learning, even though such learning is crucial to just about everything we do, from sports to regaining mobility after a stroke or accident.

"This study demonstrates that we can learn much better just by watching than previously thought, but it also suggests that there is more than meets the eye," says Yigal Agam, a neuroscience graduate student and study co-author. "Next we need to really understand how to optimize non-verbal imitative learning—to make that learning as fast, easy and painless as possible."

The study evaluated participants" ability to view, remember and then reproduce a complex sequence of motions generated by the random, unpredictable movements of a disc. Even a single repetition of a motion sequence substantially reduced errors in reproduction. To test how important it was to actually reproduce the motion, Sekuler and his colleagues compared the participants" performance when they reproduced the motion after each viewing to when they did so only once, after the final viewing, and otherwise just carefully observed and thought about the motion. Interestingly, performance was the same. Seeing the motion, without actually imitating it, was enough to learn it.

But leveraging a learner"s attention to the task at hand is also critically important. "It"s not simply a question of information falling on the retina—this kind of learning is a skill of acquiring information, transforming it into output, which is the imitation," says Agam.

Several strategies may help leverage a learner"s attention and motivate imitative learning. Organizing the motor skill practice is key. For example, Sekuler, an expert on the neural and cognitive terrain of visual memory, says that breaking down a behavioral sequence into chunks can aid imitation learning, just as chunking can help us memorize a string of seemingly unrelated digits or other material. Agam and Sekuler have their sights set on identifying strategies that teachers and coaches could use to make complex actions more "chunkable," and therefore easier to imitate.

For example, to promote chunking (and learning), a complex behavior can be paused at just the right time, which will help the novice viewer more easily appreciate and imitate the separate components of that behavior. The researchers" long-term goal is to devise simple methods that will allow teachers and coaches to take any arbitrary complex action that they want to teach—like that series of dance steps or that perfect golf swing, and then re-package that action into components that make for optimal learning.

Laura Gardner | EurekAlert!
Further information:
http://www.brandeis.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>