Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Monkey see, monkey do?

Novel study sheds light on imitation learning

What is the very best way to learn a complex task? Is it practice, practice, practice, or is watching and thinking enough to let you imitate a physical activity, such as skiing or ballet? A new study from Brandeis University published this week in the Journal of Vision unravels some of the mysteries surrounding how we learn to do things like tie our shoes, feed ourselves, or perform dazzling dance steps.

"What makes one person clumsy and the next person a prima ballerina is a combination of talent and practice," explains study co-author Robert Sekuler a neuroscientist at Brandeis" Volen Center for Complex Systems. "We are trying to determine what strategies will optimize imitation learning, which is crucial for acquiring many of the skills used in daily life. A lot of what we do we learn by watching and imitating others."

The study provides a first detailed look into explicit learning of sequential, non-verbal material. While many studies have evaluated serial recall of words, researchers have paid little attention to imitation learning, even though such learning is crucial to just about everything we do, from sports to regaining mobility after a stroke or accident.

"This study demonstrates that we can learn much better just by watching than previously thought, but it also suggests that there is more than meets the eye," says Yigal Agam, a neuroscience graduate student and study co-author. "Next we need to really understand how to optimize non-verbal imitative learning—to make that learning as fast, easy and painless as possible."

The study evaluated participants" ability to view, remember and then reproduce a complex sequence of motions generated by the random, unpredictable movements of a disc. Even a single repetition of a motion sequence substantially reduced errors in reproduction. To test how important it was to actually reproduce the motion, Sekuler and his colleagues compared the participants" performance when they reproduced the motion after each viewing to when they did so only once, after the final viewing, and otherwise just carefully observed and thought about the motion. Interestingly, performance was the same. Seeing the motion, without actually imitating it, was enough to learn it.

But leveraging a learner"s attention to the task at hand is also critically important. "It"s not simply a question of information falling on the retina—this kind of learning is a skill of acquiring information, transforming it into output, which is the imitation," says Agam.

Several strategies may help leverage a learner"s attention and motivate imitative learning. Organizing the motor skill practice is key. For example, Sekuler, an expert on the neural and cognitive terrain of visual memory, says that breaking down a behavioral sequence into chunks can aid imitation learning, just as chunking can help us memorize a string of seemingly unrelated digits or other material. Agam and Sekuler have their sights set on identifying strategies that teachers and coaches could use to make complex actions more "chunkable," and therefore easier to imitate.

For example, to promote chunking (and learning), a complex behavior can be paused at just the right time, which will help the novice viewer more easily appreciate and imitate the separate components of that behavior. The researchers" long-term goal is to devise simple methods that will allow teachers and coaches to take any arbitrary complex action that they want to teach—like that series of dance steps or that perfect golf swing, and then re-package that action into components that make for optimal learning.

Laura Gardner | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>