Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One small step for Deinococcus or one giant leap for radiation biology? Bacterial radioresistance through protein oxidation

20.03.2007
In a new study published online in the open access journal PLoS Biology, Michael J. Daly, Ph.D., associate professor at the Uniformed Services University of the Health Sciences (USU), and colleagues show that the ability of the bacterium Deinococcus radiodurans to endure and survive enormous levels of ionizing radiation (X-rays and gamma-rays) relies on a powerful mechanism that protects proteins from oxidative damage during irradiation.

The field of radiobiology is built on the premise that radiation is dangerous because of its damaging effects on DNA. Contrary to that view, Daly et al. report that the ability of cells to survive radiation is highly dependent on the amount of protein damage caused during irradiation. Surprisingly, a dose of radiation that is sufficient to cause only minor DNA damage in radiation-sensitive cells will cause high levels of protein damage compared to resistant cells exposed to the same dose.

This new model of radiation toxicity shifts the emphasis away from DNA damage toward protein damage, where DNA repair-related proteins in sensitive cells are devastated by radiation long before DNA is significantly damaged. In contrast, repair enzymes in extremely resistant cells survive and function with great efficiency after irradiation because they are protected, specifically by a chemical mechanism involving manganese (II) ions.

The new model of extreme radiation resistance reconciles many seemingly conflicting results published over the last two decades, and points directly at the existence of potent manganese-based radioprotectors that prevent protein damage. Daly expects that delivery of purified radioprotective Mn-complexes into sensitive cell-types will make them temporarily radiation resistant. This possibility opens up new avenues for radioprotection, including approaches to facilitate recovery from short- or long-term exposures to radiation such as cancer therapies, accident- or terror-related nuclear events, and astronauts exposed to cosmic radiation.

Andrew Hyde | alfa
Further information:
http://www.plosbiology.org)
http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.0050092

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>