Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


One small step for Deinococcus or one giant leap for radiation biology? Bacterial radioresistance through protein oxidation

In a new study published online in the open access journal PLoS Biology, Michael J. Daly, Ph.D., associate professor at the Uniformed Services University of the Health Sciences (USU), and colleagues show that the ability of the bacterium Deinococcus radiodurans to endure and survive enormous levels of ionizing radiation (X-rays and gamma-rays) relies on a powerful mechanism that protects proteins from oxidative damage during irradiation.

The field of radiobiology is built on the premise that radiation is dangerous because of its damaging effects on DNA. Contrary to that view, Daly et al. report that the ability of cells to survive radiation is highly dependent on the amount of protein damage caused during irradiation. Surprisingly, a dose of radiation that is sufficient to cause only minor DNA damage in radiation-sensitive cells will cause high levels of protein damage compared to resistant cells exposed to the same dose.

This new model of radiation toxicity shifts the emphasis away from DNA damage toward protein damage, where DNA repair-related proteins in sensitive cells are devastated by radiation long before DNA is significantly damaged. In contrast, repair enzymes in extremely resistant cells survive and function with great efficiency after irradiation because they are protected, specifically by a chemical mechanism involving manganese (II) ions.

The new model of extreme radiation resistance reconciles many seemingly conflicting results published over the last two decades, and points directly at the existence of potent manganese-based radioprotectors that prevent protein damage. Daly expects that delivery of purified radioprotective Mn-complexes into sensitive cell-types will make them temporarily radiation resistant. This possibility opens up new avenues for radioprotection, including approaches to facilitate recovery from short- or long-term exposures to radiation such as cancer therapies, accident- or terror-related nuclear events, and astronauts exposed to cosmic radiation.

Andrew Hyde | alfa
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>