Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn study on olfactory nerve cells shows why we smell better when we sniff

15.03.2007
Unlike most of our sensory systems that detect only one type of stimuli, our sense of smell works double duty, detecting both chemical and mechanical stimuli to improve how we smell, according to University of Pennsylvania School of Medicine researchers in the March issue of Nature Neuroscience.

This finding, plus the fact that both types of stimuli produce reaction in olfactory nerve cells, which control how our brain perceives what we smell, explains why we sniff to smell something, and why our sense of smell is synchronized with inhaling.

"The driving force for such synchronization remained a mystery for more than 50 years," says senior author Minghong Ma, PhD, Assistant Professor of Neuroscience. "These results help us understand how the mammalian olfactory system encodes and decodes odor information in the environment."

Researchers tested two different types of stimulation on olfactory neurons in mice: chemical stimuli, such as those used in making perfumes that have almond-like and banana-like scents, and mechanical stimuli, that is pressure carried by air flow to the nostrils while breathing.

The group did this first by puffing a chemical stimulus into the nose. As expected, this produced a reaction in the olfactory neurons, the primary sensory neurons in the nose that perceive odors. Researchers then puffed a solution without the chemical stimuli into the mouse's nose. This also produced a similar, but smaller reaction in the olfactory neurons. By decreasing pressure of the non-odor solution, they also found that the reaction in the olfactory neurons was less, confirming that it was sensitive to mechanical stimulation.

When olfactory neurons respond to odor molecules, they transmit chemical energy into electrical signals, which then trigger a secondary molecular messenger cascade that generates electrical impulses to the brain, signaling that it is smelling something. The group discovered that chemical and mechanical stimuli both resulted in the same messenger molecule, cAMP, which acts like a gatekeeper of reactions in the olfactory neurons.

Although this study was conducted on a mouse model, the researchers tested two different parts of the nose, one that humans have and one that humans do not. The first, the septal organ, is a patch of smell-sensitive tissue on the septal wall of the nasal cavity. The second, the main olfactory epithelium, is a smell-sensitive tissue inside the nasal cavity.

Synchronized Breathing

The septal organ is only about 1 percent the size of the main olfactory epithelium and isn't shared by all mammals. Mice, for example, have a septal organ. Humans do not. But in this study, Ma's group found that 50 percent of the cells in the main olfactory epithelium are sensitive to physical stimuli, suggesting that mechanosensitivity of the olfactory sensory neurons exists in all mammals, even those like humans, without the septal organ.

The mechanosensitivity of our olfactory neurons has two possible functions, suggest the investigators. The first is that it increases our ability to smell, enhancing the detection of odorous molecules in the air. The second is a peripheral drive in the brain to synchronize rhythmic activity, which is the concurrent firing of neurons in the olfactory bulb with breathing.

"The mechanosensitivity may increase the sensitivity of our nose, especially when stimulated by weak odors," says Ma. "It helps the brain make better sense out of odor responses when it integrates airflow information. We still don't know how it happens, but sniffing is essential for odor perception."

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>