Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long legs are more efficient

14.03.2007
Getting a leg up

Scientists have known for years that the energy cost of walking and running is related primarily to the work done by muscles to lift and move the limbs.

But how much energy does it actually take to get around? Does having longer legs really make a difference?

Herman Pontzer, Ph.D., assistant professor of physical anthropology in Arts & Sciences, has developed a mathematical model for calculating energy costs for two and four-legged animals. His research was published in a recent issue of The Journal of Experimental Biology.

"All things being equal, leg length is one of the major determinants of cost," says Pontzer, "If two animals are identical except for leg length, the animal with longer legs is more efficient."

The fossil record shows that two million years ago, there was a big increase in leg length in early humans. Pontzer suggests that one reason for this increase could have been the energy saved by having longer legs. "If you greatly increase the distance that you travel each day, then you'd expect evolution to act on walking efficiency," he says. "That way, the energy you save on travel can be spent instead on survival and reproduction."

Pontzer's LiMB model is an equation that predicts walking and running. Importantly, the model predicts that the rate of force generation — and therefore the rate of energy use — is related to limb length. Longer legs mean less force production and lower energy cost.

To test his equation, Pontzer put people, goats and dogs on a treadmill in his lab, and measured how much oxygen each used during walking and running at various speeds.

He found that the LiMB model explained more of a variation in locomotor cost than other predictors, including contact time and body mass, showing that it worked for animals with four legs as well as two.

Herman Pontzer | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>