Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long legs are more efficient

14.03.2007
Getting a leg up

Scientists have known for years that the energy cost of walking and running is related primarily to the work done by muscles to lift and move the limbs.

But how much energy does it actually take to get around? Does having longer legs really make a difference?

Herman Pontzer, Ph.D., assistant professor of physical anthropology in Arts & Sciences, has developed a mathematical model for calculating energy costs for two and four-legged animals. His research was published in a recent issue of The Journal of Experimental Biology.

"All things being equal, leg length is one of the major determinants of cost," says Pontzer, "If two animals are identical except for leg length, the animal with longer legs is more efficient."

The fossil record shows that two million years ago, there was a big increase in leg length in early humans. Pontzer suggests that one reason for this increase could have been the energy saved by having longer legs. "If you greatly increase the distance that you travel each day, then you'd expect evolution to act on walking efficiency," he says. "That way, the energy you save on travel can be spent instead on survival and reproduction."

Pontzer's LiMB model is an equation that predicts walking and running. Importantly, the model predicts that the rate of force generation — and therefore the rate of energy use — is related to limb length. Longer legs mean less force production and lower energy cost.

To test his equation, Pontzer put people, goats and dogs on a treadmill in his lab, and measured how much oxygen each used during walking and running at various speeds.

He found that the LiMB model explained more of a variation in locomotor cost than other predictors, including contact time and body mass, showing that it worked for animals with four legs as well as two.

Herman Pontzer | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>