Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study confirms imaging compound identifies amyloid-beta in human brain

13.03.2007
Imaging with Pittsburgh Compound B may track treatment results, not sufficient for diagnosis

A team led by Massachusetts General Hospital (MGH) investigators has confirmed that the imaging agent Pittsburgh Compound B (PiB) binds to the protein in amyloid plaques that characterize Alzheimer's disease in the human brain. Their report in the March Archives of Neurology describes the first postmortem neuropathological study of a dementia patient who had previously participated in a PET imaging study using PiB.

"This report is an essential validation of the use of PET imaging with PiB to identify amyloid-beta deposits in the brain and as a marker of disease progression that could be used to track the benefit of new treatments," says John Growdon, MD, director of the MGH Memory Disorders Unit, the paper's senior author. "It also indicates that the interpretation of PiB PET scanning needs to be done in the context of a patient's clinical symptoms and other diagnostic studies."

Alzheimer's disease is characterized by plaques within the brain of amyloid-beta protein, which is toxic to brain cells. Previous studies have shown that PiB, invented by researchers at the University of Pittsburgh School of Medicine, binds to amyloid-beta in the brains of mice and can be detected by PET scan in the brains of human patients with a diagnosis of probable Alzheimer's disease. But since a definitive Alzheimer's diagnosis can be made only on autopsy, there had been no confirmation that PiB in human brains was detecting amyloid-beta deposits.

The Archives of Neurology report describes the case of an elderly man with symptoms that could indicate several neurological disorders. He was evaluated numerous times over a period of three years, including a standard PET scan that produced results suggesting Alzheimer's disease. His eventual diagnosis was dementia with Lewy bodies, a condition that can exist along with Alzheimer's. He also enrolled in a research study involving PiB imaging, and the results of his scan showed the imaging compound had been taken up throughout the cerebral cortex, the outer layer of the brain. Three months after participating in the imaging study, the patient died at the age of 76 following a head injury, and an autopsy was performed.

The autopsy confirmed the diagnosis of dementia with Lewy bodies and had several findings characteristic of Alzheimer's disease. While some plaques that typify Alzheimer's were seen, most amyloid-beta was found in the walls of blood vessels, a condition known as cerebral amyloid angiopathy.

"The distribution of amyloid seen at autopsy matched the overall distribution seen in the PiB imaging study; levels were higher in the cerebral cortex than in other areas of the brain," says Matthew Frosch, MD, PhD, of the MassGeneral Institute for Neurodegenerative Diseases (MGH-MIND), a study co-author. "Features of Alzheimer's pathology, amyloid plaques and neurofibrillary tangles, were observed, but not at a level that would support a separate diagnosis of Alzheimer's disease."

The researchers note that, while their results confirm that uptake of PiB indicates the presence of amyloid in the brain, a positive PiB PET scan cannot be equated with a definitive Alzheimer's diagnosis. "About 15 percent of control participants in previous PiB studies, people with no cognitive impairment, had some level of PiB uptake," says Brian Bacskai, PhD, of MGH-MIND, the paper's lead author. "Some participants who probably had Alzheimer's had low uptake, and uptake levels varied for those with a diagnosis of mild cognitive impairment. Once a safe and effective drug for removing amyloid from the brain or preventing its accumulation is developed, it will be important to see how closely PiB PET scans can track those effects."

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>