Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making sense of the world through a cochlear implant

13.03.2007
Scientists at University College London and Imperial College London have shown how the brain makes sense of speech in a noisy environment, such as a pub or in a crowd. The research suggests that various regions of the brain work together to make sense of what it hears, but that when the speech is completely incomprehensible, the brain appears to give up trying.

The study was intended to simulate the everyday experience of people who rely on cochlear implants, a surgically-implanted electronic device that can help provide a sense of sound to a person who is profoundly deaf or who has severe hearing problems.

Using MRI scans of the brain, the researchers, funded by the Wellcome Trust and the Medical Research Council, identified the importance of one particular region, the angular gyrus, in decoding distorted sentences. The findings are published in the Journal of Neuroscience.

In an ordinary setting, where background noise is minimal and a person's speech is clear, it is mainly the left and right temporal lobes that are involved in interpreting speech. However, the researchers have found that when hearing is impaired by background noise, other regions of the brain are engaged, such as the angular gyrus, the area of the brain also responsible for verbal working memory – but only when the sentence is predictable.

"In a noisy environment, when we hear speech that appears to be predictable, it seems that more regions of the brain are engaged," explains Dr Jonas Obleser, who did the research whilst based at the Institute of Cognitive Neuroscience (ICN), UCL. "We believe this is because the brain stores the sentence in short-term memory. Here it juggles the different interpretations of what it has heard until the result fits in with the context of the conversation."

The researchers hope that by understanding how the brain interprets distorted speech, they will be able to improve the experience of people with cochlear implants, which can distort speech and have a high level of background noise.

"The idea behind the study was to simulate the experience of having a cochlear implant, where speech can sound like a very distorted, harsh whisper," says Professor Sophie Scott, a Wellcome Trust Senior Research Fellow at the ICN. "Further down the line, we hope to study variation in the hearing of people with implants – why is it that some people do better at understanding speech than others. We hope that this will help inform speech and hearing therapy in the future."

Craig Brierley | alfa
Further information:
http://www.imperial.ac.uk
http://www.ucl.ac.uk
http://www.wellcome.ac.uk

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>