Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making sense of the world through a cochlear implant

13.03.2007
Scientists at University College London and Imperial College London have shown how the brain makes sense of speech in a noisy environment, such as a pub or in a crowd. The research suggests that various regions of the brain work together to make sense of what it hears, but that when the speech is completely incomprehensible, the brain appears to give up trying.

The study was intended to simulate the everyday experience of people who rely on cochlear implants, a surgically-implanted electronic device that can help provide a sense of sound to a person who is profoundly deaf or who has severe hearing problems.

Using MRI scans of the brain, the researchers, funded by the Wellcome Trust and the Medical Research Council, identified the importance of one particular region, the angular gyrus, in decoding distorted sentences. The findings are published in the Journal of Neuroscience.

In an ordinary setting, where background noise is minimal and a person's speech is clear, it is mainly the left and right temporal lobes that are involved in interpreting speech. However, the researchers have found that when hearing is impaired by background noise, other regions of the brain are engaged, such as the angular gyrus, the area of the brain also responsible for verbal working memory – but only when the sentence is predictable.

"In a noisy environment, when we hear speech that appears to be predictable, it seems that more regions of the brain are engaged," explains Dr Jonas Obleser, who did the research whilst based at the Institute of Cognitive Neuroscience (ICN), UCL. "We believe this is because the brain stores the sentence in short-term memory. Here it juggles the different interpretations of what it has heard until the result fits in with the context of the conversation."

The researchers hope that by understanding how the brain interprets distorted speech, they will be able to improve the experience of people with cochlear implants, which can distort speech and have a high level of background noise.

"The idea behind the study was to simulate the experience of having a cochlear implant, where speech can sound like a very distorted, harsh whisper," says Professor Sophie Scott, a Wellcome Trust Senior Research Fellow at the ICN. "Further down the line, we hope to study variation in the hearing of people with implants – why is it that some people do better at understanding speech than others. We hope that this will help inform speech and hearing therapy in the future."

Craig Brierley | alfa
Further information:
http://www.imperial.ac.uk
http://www.ucl.ac.uk
http://www.wellcome.ac.uk

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>