Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteochemometrics achieves better retardants for HIV/Aids

09.03.2007
A new method for analysis of retroviral proteins gives new opportunities to the development of novel retardants for HIV/Aids. The study, which was published in the March issue of PLoS Computational Biology, shows how to in a very exact way analyze the interaction of drug targets with small molecules.

The new method, developed by Professor Jarl Wikberg at Uppsala University, allowed the researchers to create a ‘map’ that in detail shows how 61 drug targets from nine different retroviruses interact with surrounding molecules.

The problem in HIV is that the virus mutates very easily. This leads to appearance of new strains that escape the body’s immune defence as well as drug retardants. The virus becomes resistant to the retardant and the treatment fails.

“This is a large problem. Resistant strains appear gradually in all patients irrespectively which combinations of the present treatments are used. Finally there is no alternative to treat the patient”, says Jarl Wikberg.

The new method – proteochemometrics – makes it possible to predict how effectively drug candidates will retard different HIV-strains. This makes it a relatively simple matter to design new drugs that concomitantly retards many different resistance strains of HIV.

“We predict that it will be substantially more difficult for the virus to escape a retardant that has been designed with use of proteochemometrics compared to the presently used retardants”, says Jarl Wikberg, and continues:

“The pharmaceutical industry has already shown a great interest to our approach and we have great hopes that it, within a relatively short time span, will result in new improved retardants for treatment of HIV/Aids”.

The article, published in PLoS Computational Biology, can be read at: http://dx.doi.org/10.1371/journal.pcbi.0030048

For more information contact Jarl Wikberg, phone: +46 (0)18-471 42 38; cell phone: +46 (0)70-3 449 549; e-mail: Jarl.Wikberg@farmbio.uu.se

Anneli Waara | alfa
Further information:
http://dx.doi.org/10.1371/journal.pcbi.0030048
http://www.uu.se

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>