Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteochemometrics achieves better retardants for HIV/Aids

09.03.2007
A new method for analysis of retroviral proteins gives new opportunities to the development of novel retardants for HIV/Aids. The study, which was published in the March issue of PLoS Computational Biology, shows how to in a very exact way analyze the interaction of drug targets with small molecules.

The new method, developed by Professor Jarl Wikberg at Uppsala University, allowed the researchers to create a ‘map’ that in detail shows how 61 drug targets from nine different retroviruses interact with surrounding molecules.

The problem in HIV is that the virus mutates very easily. This leads to appearance of new strains that escape the body’s immune defence as well as drug retardants. The virus becomes resistant to the retardant and the treatment fails.

“This is a large problem. Resistant strains appear gradually in all patients irrespectively which combinations of the present treatments are used. Finally there is no alternative to treat the patient”, says Jarl Wikberg.

The new method – proteochemometrics – makes it possible to predict how effectively drug candidates will retard different HIV-strains. This makes it a relatively simple matter to design new drugs that concomitantly retards many different resistance strains of HIV.

“We predict that it will be substantially more difficult for the virus to escape a retardant that has been designed with use of proteochemometrics compared to the presently used retardants”, says Jarl Wikberg, and continues:

“The pharmaceutical industry has already shown a great interest to our approach and we have great hopes that it, within a relatively short time span, will result in new improved retardants for treatment of HIV/Aids”.

The article, published in PLoS Computational Biology, can be read at: http://dx.doi.org/10.1371/journal.pcbi.0030048

For more information contact Jarl Wikberg, phone: +46 (0)18-471 42 38; cell phone: +46 (0)70-3 449 549; e-mail: Jarl.Wikberg@farmbio.uu.se

Anneli Waara | alfa
Further information:
http://dx.doi.org/10.1371/journal.pcbi.0030048
http://www.uu.se

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>