Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Opening windows effective way of preventing transmission of TB

28.02.2007
A study funded by the Wellcome Trust and the Sir Halley Stewart Trust has shown that opening windows can be more effective than using mechanical ventilation at reducing the risk of transmission of airborne diseases such as tuberculosis (TB).

The spread of airborne infections in institutional settings such as hospitals, waiting rooms, prisons and homeless shelters is an important public health problem. This is especially true in resource poor settings, where the prevalence of TB is highest, and where preventive measures such as negative-pressure isolation rooms are hardest to implement.

A study published today in the freely available journal PLoS Medicine and carried out by researchers from the Department of Infectious Diseases and Immunity and the Wellcome Trust Centre for Clinical Tropical Medicine, Imperial College London, is the first to investigate the role of natural ventilation by opening windows and doors for preventing the transmission of airborne infection. This simple and low-cost measure is recommended by the WHO for preventing TB transmission in healthcare settings, but until now there have been no studies to support these guidelines.

The researchers, led by Dr. Rod Escombe from Imperial College London, studied eight hospitals in Lima, Peru, and measured natural ventilation in 70 different rooms where infectious patients are likely to be found, including respiratory isolation rooms, TB wards, respiratory wards, general medical wards, outpatient consulting rooms, waiting rooms, and emergency departments. They compared these with 12 modern mechanically-ventilated, negative-pressure respiratory isolation rooms.

The study found that natural ventilation when windows and doors were opened was more than double that of mechanically-ventilated, negative-pressure rooms functioning at the high rates recommended by guidelines, and 18 times that of rooms with windows and doors closed. Even at the lowest wind speeds, natural ventilation exceeded mechanical ventilation.

"We were surprised by how effective simply opening windows and doors was at generating high rates of ventilation, which would theoretically reduce the risk of transmission," says Dr Escombe. "Using an airborne infection model to predict the effect of natural ventilation on TB transmission, we estimated that in mechanically-ventilated rooms, 39% of susceptible individuals would become infected following 24 hours of exposure to untreated TB patients. This compared with 33% in modern and 11% in pre-1950 naturally ventilated facilities with windows and doors open."

Facilities built more than 50 years ago, characterized by large windows and high ceilings, had greater ventilation than modern naturally ventilated rooms. Some of these older facilities had been built especially for TB patients, along the design principles of TB sanatoria when fresh air was part of the treatment for TB in the pre-antibiotic era.

"We concluded that opening windows and doors provides high rates of ventilation and may therefore provide the most effective protection against airborne infection in low resource settings," says Dr Escombe. "Old-fashioned clinical areas with high ceilings and large windows provided the greatest protection. Mechanically ventilated negative-pressure isolation rooms are very expensive to install and maintain, and are limited to certain high risk areas such as TB isolation rooms. In contrast, natural ventilation is a low-cost, low-tech intervention that can be applied in many different areas, including waiting rooms, out-patient clinics and emergency departments, where many infectious patients are found. Whilst not suited to cold climates, natural ventilation offers an important infection control measure in the tropics, where the greatest burden of TB is found."

Craig Brierley | EurekAlert!
Further information:
http://www.wellcome.ac.uk

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>