Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research may overturn conventional wisdom on drug-resistant tuberculosis

22.02.2007
A newly released study suggests that the majority of cases of drug-resistant tuberculosis (TB) among patients undergoing treatment for the disease may be due to new infections, not acquired resistance. If confirmed in future studies the research, in the March 15 issue of The Journal of Infectious Diseases, may drive a major shift in strategy for controlling TB.

A major difficulty in treating patients with pulmonary TB is that the organism can become progressively resistant to standard therapy. This resistance was long thought to be acquired through mutations in the infecting strain when the treatment regimen was inadequate or the patient did not comply with it. More recently, studies of the genetic make-up of Mycobacterium tuberculosis (M. tuberculosis) strains have shown that resistance can also result from re-infection with a new strain that is already drug-resistant, sometimes against multiple drugs.

The authors of the new study, Qian Gao, PhD, and coworkers in Shanghai, China and elsewhere, used molecular genetics and drug susceptibility testing to investigate patients with TB who were treated in Shanghai hospitals during 1999-2004. They focused on 38 patients from whom samples were available before and during treatment. The researchers found that the strains of TB in the samples taken before treatment were genetically different from those taken during treatment in 87 percent (33 out of 38) of patients.

To determine the relative proportion of drug resistance caused by re-infection or mutation, the authors excluded six patients who were initially infected with resistant TB and then became drug-susceptible or resistant to fewer drugs. In the remaining 32 patients, the initial sample was drug-susceptible or resistant to at least one drug and the subsequent sample resistant to one or more drugs. Of these patients, 84 percent (27 patients) had before-and-during samples with different genetic patterns and only 16 percent (5 patients) had identical patterns. Thus, there were more than 5 times as many cases caused by re-infection compared to mutation.

"It was surprising to find a high rate of primary drug-resistant strains among treated patients," said Dr.Gao. "This overturned the common belief that drug resistance among treated patients is always acquired."

The investigators also noted that two patients in the study had multidrug-resistant strains in both their first and second sample, and that 10 others had multidrug-resistant strains in their second sample; genetic testing showed that 9 of the 10 patients had a different strain in the second sample. The most serious kind of drug-resistant disease therefore accounted for about a third of patients with drug resistance.

Limitations of the study included the exclusion of many patients without sample results, reliance on previously collected data in which some patients might have been misclassified, use of computerized drug susceptibility data, and the unknown contribution of mixed infections. Nevertheless, the findings are a warning. Although better diagnostics, drugs, and effective vaccines for TB are clearly needed, the authors said, "Our findings highlight the urgency of accelerating efforts to interrupt the transmission of drug-resistant tuberculosis." The research shows improved methods of preventing TB transmission may be needed in the very facilities and communities where TB patients are treated.

Fast Facts

- Tuberculosis (TB) is one of the world's top killer diseases, claiming roughly 2 million lives each year.

- Drug-resistant TB is a growing problem worldwide. Most resistance is believed to derive from inefficient treatment, leading to mutations.

- This study found that 33 of 38 patients had a different strain of TB during treatment than before treatment.

- Improved methods of preventing TB transmission may be needed in the very facilities and communities where TB patients are treated.

Steve Baragona | EurekAlert!
Further information:
http://www.idsociety.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>