Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study links attempted suicide with genetic evidence identified in previous suicide research

22.02.2007
A Johns Hopkins-led study has found evidence that a genetic tendency toward suicide has been linked to a particular area of the genome on chromosome 2 that has been implicated in two additional recent studies of attempted suicide.

“We’re hoping our findings will eventually lead to tests that can identify those at high risk for attempting suicide,” says Virginia Willour, Ph.D., an assistant professor in the Department of Psychiatry at the Johns Hopkins University School of Medicine and lead author of the study. An estimated 4.6 percent of Americans ages 15 to 54 have tried to take their lives, according to Willour.

The investigators conducted a family linkage study in which they searched for commonalities in the genomes of family members with bipolar disorder and a history of attempted suicide. The same gene region on chromosome 2 that was identified by this bipolar disorder and attempted suicide study was recently identified by two complementary family studies that looked at attempted suicide in families with major depression and alcohol dependence.

“Family linkage studies are not always consistent, so the fact that all three studies, including ours, point to the same region of the genome is a good indication that we are on the right track toward identifying a gene or genes that play a role in why a person chooses to take his or her own life,” says Willour.

In the multi-institutional study, results of which appear in the March issue of Biological Psychiatry, the researchers examined data from 162 families with bipolar disorder. They looked at attempted suicide in this sample because it is an important clinical problem that tends to occur more often in some of these families than in others, suggesting a distinctive genetic basis, according to senior author James B. Potash, M.D., M.P.H., of the Department of Psychiatry at Hopkins. This technique, of looking at sub-types of illness, is used by genetic researchers as a way to reduce genetic complexity.

From the 162 families, the researchers selected 417 subjects who were diagnosed with schizoaffective/bipolar disorder, bipolar I disorder or bipolar II disorder.

These subjects were asked whether they had ever attempted suicide and the degree of intent of the most serious attempt. One hundred fifty-four subjects said they had attempted suicide, and 122 stated that they had “definite” intent. For the purpose of this study, the latter were considered to have a history of attempted suicide.

Data for all 417 subjects was entered into a computer program that looks for genetic similarities between subjects with similar psychological profiles. Results indicated that family members with a history of attempted suicide and bipolar disorder showed a high degree of genetic similarity at a specific area -- DNA marker D2S1777 -- on a section of chromosome 2 referred to as 2p12. This is the same marker implicated in a 2004 study from the University of Pittsburgh School of Medicine that looked at attempted suicide and major depression. And it is close to another marker, D2S1790, located in the 2p11 region of chromosome 2, which was identified in a 2004 study from the University of Connecticut School of Medicine that looked at alcoholism and attempted suicide.

Willour says that although the Hopkins-led study does not pinpoint a specific gene responsible for attempted suicide, it does suggest a “neighborhood” in which the gene might be found. She adds that the next step is to further narrow the search and find the “address.” “Once we have located the specific gene,” she says, “we can better identify people who might be at risk of suicide and offer drug companies a target for possible therapies.”

The data used by Willour and her team -- DNA samples, medical histories and psychiatric evaluations -- came from an independent study, CHIP, conducted at the University of Chicago, Johns Hopkins, and the National Institute of Mental Health (NIMH) Intramural Program. The purpose of CHIP, initiated in 1988 and funded through at least 2010, is to find genes that predispose people to developing bipolar disorder or particular subtypes of the illness.

Eric Vohr | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>