Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study links attempted suicide with genetic evidence identified in previous suicide research

22.02.2007
A Johns Hopkins-led study has found evidence that a genetic tendency toward suicide has been linked to a particular area of the genome on chromosome 2 that has been implicated in two additional recent studies of attempted suicide.

“We’re hoping our findings will eventually lead to tests that can identify those at high risk for attempting suicide,” says Virginia Willour, Ph.D., an assistant professor in the Department of Psychiatry at the Johns Hopkins University School of Medicine and lead author of the study. An estimated 4.6 percent of Americans ages 15 to 54 have tried to take their lives, according to Willour.

The investigators conducted a family linkage study in which they searched for commonalities in the genomes of family members with bipolar disorder and a history of attempted suicide. The same gene region on chromosome 2 that was identified by this bipolar disorder and attempted suicide study was recently identified by two complementary family studies that looked at attempted suicide in families with major depression and alcohol dependence.

“Family linkage studies are not always consistent, so the fact that all three studies, including ours, point to the same region of the genome is a good indication that we are on the right track toward identifying a gene or genes that play a role in why a person chooses to take his or her own life,” says Willour.

In the multi-institutional study, results of which appear in the March issue of Biological Psychiatry, the researchers examined data from 162 families with bipolar disorder. They looked at attempted suicide in this sample because it is an important clinical problem that tends to occur more often in some of these families than in others, suggesting a distinctive genetic basis, according to senior author James B. Potash, M.D., M.P.H., of the Department of Psychiatry at Hopkins. This technique, of looking at sub-types of illness, is used by genetic researchers as a way to reduce genetic complexity.

From the 162 families, the researchers selected 417 subjects who were diagnosed with schizoaffective/bipolar disorder, bipolar I disorder or bipolar II disorder.

These subjects were asked whether they had ever attempted suicide and the degree of intent of the most serious attempt. One hundred fifty-four subjects said they had attempted suicide, and 122 stated that they had “definite” intent. For the purpose of this study, the latter were considered to have a history of attempted suicide.

Data for all 417 subjects was entered into a computer program that looks for genetic similarities between subjects with similar psychological profiles. Results indicated that family members with a history of attempted suicide and bipolar disorder showed a high degree of genetic similarity at a specific area -- DNA marker D2S1777 -- on a section of chromosome 2 referred to as 2p12. This is the same marker implicated in a 2004 study from the University of Pittsburgh School of Medicine that looked at attempted suicide and major depression. And it is close to another marker, D2S1790, located in the 2p11 region of chromosome 2, which was identified in a 2004 study from the University of Connecticut School of Medicine that looked at alcoholism and attempted suicide.

Willour says that although the Hopkins-led study does not pinpoint a specific gene responsible for attempted suicide, it does suggest a “neighborhood” in which the gene might be found. She adds that the next step is to further narrow the search and find the “address.” “Once we have located the specific gene,” she says, “we can better identify people who might be at risk of suicide and offer drug companies a target for possible therapies.”

The data used by Willour and her team -- DNA samples, medical histories and psychiatric evaluations -- came from an independent study, CHIP, conducted at the University of Chicago, Johns Hopkins, and the National Institute of Mental Health (NIMH) Intramural Program. The purpose of CHIP, initiated in 1988 and funded through at least 2010, is to find genes that predispose people to developing bipolar disorder or particular subtypes of the illness.

Eric Vohr | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>