Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rotten to the core: How workplace 'bad apples' spoil barrels of good employees

13.02.2007
Look around any organization and chances are you'll be able to find at least one person whose negative behavior affects the rest of the group to varying degrees. So much so, say two University of Washington researchers, that these "bad apples" are like a virus to their teams, and can upset or spoil the whole apple cart.

The researchers' paper, appearing in the current issue of Research in Organizational Behavior, examines how, when and why the behaviors of one negative member can have powerful and often detrimental influence on teams and groups.

William Felps, a doctoral student at the UW Business School and the study's lead author, was inspired to investigate how workplace conflict and citizenship can be affected by one's co-workers after his wife experienced the "bad apple" phenomenon.

Felps' wife was unhappy at work and characterized the environment as cold and unfriendly. Then, she said, a funny thing happened. One of her co-workers who was particularly caustic and was always making fun of other people at the office came down with an illness that caused him to be away for several days.

"And when he was gone, my wife said that the atmosphere of the office changed dramatically," Felps said. "People started helping each other, playing classical music on their radios, and going out for drinks after work. But when he returned to the office, things returned to the unpleasant way they were. She hadn't noticed this employee as being a very important person in the office before he came down with this illness but, upon observing the social atmosphere when he was gone, she came to believe that he had a profound and negative impact. He truly was the "bad apple" that spoiled the barrel."

Following his wife's experience, Felps, together with Terence Mitchell, a professor of management and organization in the Business School and UW psychology professor, analyzed about two dozen published studies that focused on how teams and groups of employees interact, and specifically how having bad teammates can destroy a good team.

Felps and Mitchell define negative people as those who don't do their fair share of the work, who are chronically unhappy and emotionally unstable, or who bully or attack others. They found that a single "toxic" or negative team member can be the catalyst for downward spirals in organizations. In a follow-up study, the researchers found the vast majority of the people they surveyed could identify at least one "bad apple" that had produced organizational dysfunction.

They reviewed a variety of working environments in which tasks and assignments were performed by small groups of employees whose jobs were interdependent or required a great deal of interaction with one another. They specifically studied smaller groups because those typically require more interaction among members and generally are less tolerant of negative behaviors. Members of smaller groups also are more likely to respond to or speak out about a group member's negative behavior. The two looked at how groups of roughly five to 15 employees in sectors such as manufacturing, fast food, and university settings were affected by the presence of one negative member.

For example, in one study of about 50 manufacturing teams, they found that teams that had a member who was disagreeable or irresponsible were much more likely to have conflict, have poor communication within the team and refuse to cooperate with one another. Consequently, the teams performed poorly.

"Most organizations do not have very effective ways to handle the problem," said Mitchell. "This is especially true when the problem employee has longevity, experience or power. Companies need to move quickly to deal with such problems because the negativity of just one individual is pervasive and destructive and can spread quickly."

According to Felps, group members will react to a negative member in one of three ways: motivational intervention, rejection or defensiveness. In the first scenario, members will express their concerns and ask the individual to change his behavior and, if unsuccessful, the negative member can be removed or rejected. If either the motivation intervention or rejection is successful, the negative member never becomes a "bad apple" and the "barrel" of employees is spared. These two options, however, require that the teammates have some power: when underpowered, teammates become frustrated, distracted and defensive.

Common defensive mechanisms employees use to cope with a "bad apple" include denial, social withdrawal, anger, anxiety and fear. Trust in the team deteriorates and as the group loses its positive culture, members physically and psychologically disengage themselves from the team.

Felps and Mitchell also found that negative behavior outweighs positive behavior – that is, a "bad apple" can spoil the barrel but one or two good workers can't unspoil it.

"People do not expect negative events and behaviors, so when we see them we pay attention to them, ruminate over them and generally attempt to marshal all our resources to cope with the negativity in some way," Mitchell said. "Good behavior is not put into the spotlight as much as negative behavior is."

The authors caution there's a difference between "bad apples" and employees who think outside the box and challenge the status quo. Since these "positive deviants" rock the boat, they may not always be appreciated. And, as Felps and Mitchell argue, unlike "bad apples," "positive deviants" actually help spark organizational innovation.

So, how can companies avoid experiencing the "bad apple" phenomenon?

"Managers at companies, particularly those in which employees often work in teams, should take special care when hiring new employees," Felps said. "This would include checking references and administering personality tests so that those who are really low on agreeableness, emotional stability or conscientiousness are screened out."

But, he added, if one slips through the selection screening, companies should place them in a position in which they work alone as much as possible. Or, alternatively, there may be no choice but to let these individuals go.

Nancy Gardner | EurekAlert!
Further information:
http://www.washington.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>