Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Technology captures tumors' genetic profile, guides cancer treatment

A study led by researchers at Dana-Farber Cancer Institute and Broad Institute of the Massachusetts Institute of Technology and Harvard University provides the first demonstration of a practical method of screening tumors for cancer-related gene abnormalities that might be treated with "targeted" drugs.

The findings, published online today on the Nature Genetics Web site, may help relieve a bottleneck between scientists' expanding knowledge of the genetic mutations associated with cancer and the still nascent ability of doctors to use that knowledge to benefit patients. The results constitute an important step toward the era of "personalized medicine," in which cancer therapy will be guided by the particular set of genetic mutations within each patient's tumor, the authors suggest.

"It's universally recognized that cancer is a disease of the genome, of mutations within genes responsible for cell growth and survival, and a great deal of effort has gone into finding those mutations, to the point where several hundred to a thousand are now known," said the study's senior author, Levi Garraway, MD, PhD, of Dana-Farber and the Broad Institute. "The challenge has been how to determine which of them are involved in each of the hundreds of kinds of cancer that occur in humans -- and to develop accurate, affordable methods of detecting key mutations in tumor samples. This study suggests that such a method is feasible on a large scale."

The authors took advantage of a scientific serendipity to devise a simple test to detect important cancer mutations. Mutations in oncogenes (genes linked to cancer) do not occur randomly; rather, they seem to arise most frequently in certain regions of the oncogenes. As a result, researchers didn't necessarily have to scan the entire length of each gene, but could focus instead on the sections most likely to harbor mutations.

They performed these screenings with a technology known as high-throughput genotyping, a fast, relatively inexpensive way of profiling gene mutations within cells. It involves extracting DNA from a tumor sample, copying this material thousands of times, depositing segments of it in tiny "wells" on a small plate, and mixing in reagents that reveal whether each segment carries a specific mutation. Automated equipment then reads the plates to determine which mutations are present in each sample.

In the study, the researchers scanned 1,000 human tumor samples for 238 known mutations in 17 specific oncogenes. (Those 17 were chosen because they are mostly "classic, well-known" contributors to cancer, Garraway stated.) They found at least one mutation in 298 of the samples, or 30 percent of the entire group, which was in keeping with the rates reported in scientific literature for the types of cancer examined.

"Mutations were identified in the percentages we expected," Garraway said, "which indicates this technique is on-target for the mutations we were interested in. Overall, the technique worked very well: we were able to obtain mutation profiles that were accurate, sensitive, and cost-effective." The cost of processing each sample was between $50 and $100, although the figure would probably be somewhat higher if the technology were used in cancer clinics to test for large numbers of oncogene mutations.

The scans produced some surprises as well. Mutations were found in several types of tumors where they had not been previously recognized. Researchers also discovered an unexpectedly large number of instances where the same set of mutations co-occurred within tumor cells, suggesting that oncogenes often work in partnership.

As promising as high-throughput genotyping is for cancer treatment and research, its capacity will need to be expanded so it can handle larger numbers of mutations. The next step, Garraway explained, would be to work with clinical investigators to explore whether use of the technology is feasible in a clinical setting and whether it actually improves doctors' ability to classify and treat individual tumors.

"We've shown the practical potential of this technique," observed Garraway, who is also an instructor in medicine at Harvard Medical School. "It is a step toward the day when cancer patients will routinely have their tumors scanned for specific mutations, and treatment will be based on the cancer's particular genetic profile."

Robbin Ray | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>