Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pycnogenol delays glucose absorption 190 times more potently than prescription medication

09.02.2007
New study discovers how Pycnogenol lowers blood glucose levels in type 2 diabetes

A new study to be published in an upcoming edition of the journal of Diabetes Research and Clinical Practice reveals that French maritime pine tree extract known as Pycnogenol® (pic-noj-en-all) delays the uptake of glucose from a meal 190 times more than prescription medications, preventing the typical high-glucose peak in the blood stream after a meal. The study revealed the pine bark is more potent for suppressing carbohydrate absorption in diabetes than synthetic prescription alpha-glucosidase inhibitors such as Precose®.

"Diabetes mellitus type II is a serious disease with rising prevalence," said Dr. Petra Högger, a lead researcher of this study. "This study is crucial for those suffering with the disease because it affirms that Pycnogenol® is more effective than prescription medication Precose® and supports the abundance of other research done on Pycnogenol® and diabetes."

The study was conducted at the University of Wurzburg Germany. Dr. Högger investigated the interaction of Pycnogenol® with the enzyme alpha-glucosidase, which breaks down carbohydrates in a meal. Results revealed Pycnogenol® is 190 times more potent for inhibition of alpha-glucosidase than the synthetic inhibitor acarbose, a common prescription medication for treatment of type II diabetes (sold in Europe under the name Glucobay® and the United States under the name Precose™).

Pycnogenol® was shown to inhibit the intestinal enzymes (alpha-glucosidase) involved in the digestion of complex carbohydrates such as starch and normal table sugar. The alpha-glucosidase breaks down carbohydrates into glucose molecules which are then absorbed into the blood stream.

"The high concentration of procyanidins (flavonoids) found in Pycnogenol® is responsible for demonstrating these excellent results," said Högger. According to Högger, the large procyanidin molecules were found to be particularly active for inhibiting the activity of alpha-glucosidase, thus demonstrating such notable results. "The carbohydrates enter the blood stream steadily over prolonged periods of time, which make meals last longer and prolong satiety."

In two separate studies conducted in 2004, Pycnogenol® was found to significantly lower blood sugar levels in type II diabetes patients. A study published in the March 2004 edition of Diabetes Care revealed that patients who supplemented with Pycnogenol® experienced lower blood sugar after meals and lower fasting blood sugar. Another study published in the October edition of Life Sciences revealed a significantly further lowered blood glucose level in patients who supplemented with Pycnogenol® while continuing their anti-diabetic medication with acarbose and metformin.

This study opens new avenues for product development of Pycnogenol® in the field of diabetes, metabolic syndrome and obesity. "With seven percent of Americans diagnosed with diabetes, more than one in five people afflicted with metabolic syndrome, and 60 million U.S. adults considered obese, finding natural and safe options for managing these conditions and improving quality of life is a priority," said Högger.

About Pycnogenol®

Pycnogenol® is a natural plant extract originating from the bark of the maritime pine that grows along the coast of southwest France and is found to contain a unique combination of procyanidins, bioflavonoids and organic acids, which offer extensive natural health benefits. The extract has been widely studied for the past 35 years and has more than 220 published studies and review articles ensuring safety and efficacy as an ingredient. Today, Pycnogenol® is available in more than 600 dietary supplements, multi-vitamins and health products worldwide.

Melanie Nimrodi | EurekAlert!
Further information:
http://www.pycnogenol.com

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>