Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pycnogenol delays glucose absorption 190 times more potently than prescription medication

09.02.2007
New study discovers how Pycnogenol lowers blood glucose levels in type 2 diabetes

A new study to be published in an upcoming edition of the journal of Diabetes Research and Clinical Practice reveals that French maritime pine tree extract known as Pycnogenol® (pic-noj-en-all) delays the uptake of glucose from a meal 190 times more than prescription medications, preventing the typical high-glucose peak in the blood stream after a meal. The study revealed the pine bark is more potent for suppressing carbohydrate absorption in diabetes than synthetic prescription alpha-glucosidase inhibitors such as Precose®.

"Diabetes mellitus type II is a serious disease with rising prevalence," said Dr. Petra Högger, a lead researcher of this study. "This study is crucial for those suffering with the disease because it affirms that Pycnogenol® is more effective than prescription medication Precose® and supports the abundance of other research done on Pycnogenol® and diabetes."

The study was conducted at the University of Wurzburg Germany. Dr. Högger investigated the interaction of Pycnogenol® with the enzyme alpha-glucosidase, which breaks down carbohydrates in a meal. Results revealed Pycnogenol® is 190 times more potent for inhibition of alpha-glucosidase than the synthetic inhibitor acarbose, a common prescription medication for treatment of type II diabetes (sold in Europe under the name Glucobay® and the United States under the name Precose™).

Pycnogenol® was shown to inhibit the intestinal enzymes (alpha-glucosidase) involved in the digestion of complex carbohydrates such as starch and normal table sugar. The alpha-glucosidase breaks down carbohydrates into glucose molecules which are then absorbed into the blood stream.

"The high concentration of procyanidins (flavonoids) found in Pycnogenol® is responsible for demonstrating these excellent results," said Högger. According to Högger, the large procyanidin molecules were found to be particularly active for inhibiting the activity of alpha-glucosidase, thus demonstrating such notable results. "The carbohydrates enter the blood stream steadily over prolonged periods of time, which make meals last longer and prolong satiety."

In two separate studies conducted in 2004, Pycnogenol® was found to significantly lower blood sugar levels in type II diabetes patients. A study published in the March 2004 edition of Diabetes Care revealed that patients who supplemented with Pycnogenol® experienced lower blood sugar after meals and lower fasting blood sugar. Another study published in the October edition of Life Sciences revealed a significantly further lowered blood glucose level in patients who supplemented with Pycnogenol® while continuing their anti-diabetic medication with acarbose and metformin.

This study opens new avenues for product development of Pycnogenol® in the field of diabetes, metabolic syndrome and obesity. "With seven percent of Americans diagnosed with diabetes, more than one in five people afflicted with metabolic syndrome, and 60 million U.S. adults considered obese, finding natural and safe options for managing these conditions and improving quality of life is a priority," said Högger.

About Pycnogenol®

Pycnogenol® is a natural plant extract originating from the bark of the maritime pine that grows along the coast of southwest France and is found to contain a unique combination of procyanidins, bioflavonoids and organic acids, which offer extensive natural health benefits. The extract has been widely studied for the past 35 years and has more than 220 published studies and review articles ensuring safety and efficacy as an ingredient. Today, Pycnogenol® is available in more than 600 dietary supplements, multi-vitamins and health products worldwide.

Melanie Nimrodi | EurekAlert!
Further information:
http://www.pycnogenol.com

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>