Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pycnogenol delays glucose absorption 190 times more potently than prescription medication

09.02.2007
New study discovers how Pycnogenol lowers blood glucose levels in type 2 diabetes

A new study to be published in an upcoming edition of the journal of Diabetes Research and Clinical Practice reveals that French maritime pine tree extract known as Pycnogenol® (pic-noj-en-all) delays the uptake of glucose from a meal 190 times more than prescription medications, preventing the typical high-glucose peak in the blood stream after a meal. The study revealed the pine bark is more potent for suppressing carbohydrate absorption in diabetes than synthetic prescription alpha-glucosidase inhibitors such as Precose®.

"Diabetes mellitus type II is a serious disease with rising prevalence," said Dr. Petra Högger, a lead researcher of this study. "This study is crucial for those suffering with the disease because it affirms that Pycnogenol® is more effective than prescription medication Precose® and supports the abundance of other research done on Pycnogenol® and diabetes."

The study was conducted at the University of Wurzburg Germany. Dr. Högger investigated the interaction of Pycnogenol® with the enzyme alpha-glucosidase, which breaks down carbohydrates in a meal. Results revealed Pycnogenol® is 190 times more potent for inhibition of alpha-glucosidase than the synthetic inhibitor acarbose, a common prescription medication for treatment of type II diabetes (sold in Europe under the name Glucobay® and the United States under the name Precose™).

Pycnogenol® was shown to inhibit the intestinal enzymes (alpha-glucosidase) involved in the digestion of complex carbohydrates such as starch and normal table sugar. The alpha-glucosidase breaks down carbohydrates into glucose molecules which are then absorbed into the blood stream.

"The high concentration of procyanidins (flavonoids) found in Pycnogenol® is responsible for demonstrating these excellent results," said Högger. According to Högger, the large procyanidin molecules were found to be particularly active for inhibiting the activity of alpha-glucosidase, thus demonstrating such notable results. "The carbohydrates enter the blood stream steadily over prolonged periods of time, which make meals last longer and prolong satiety."

In two separate studies conducted in 2004, Pycnogenol® was found to significantly lower blood sugar levels in type II diabetes patients. A study published in the March 2004 edition of Diabetes Care revealed that patients who supplemented with Pycnogenol® experienced lower blood sugar after meals and lower fasting blood sugar. Another study published in the October edition of Life Sciences revealed a significantly further lowered blood glucose level in patients who supplemented with Pycnogenol® while continuing their anti-diabetic medication with acarbose and metformin.

This study opens new avenues for product development of Pycnogenol® in the field of diabetes, metabolic syndrome and obesity. "With seven percent of Americans diagnosed with diabetes, more than one in five people afflicted with metabolic syndrome, and 60 million U.S. adults considered obese, finding natural and safe options for managing these conditions and improving quality of life is a priority," said Högger.

About Pycnogenol®

Pycnogenol® is a natural plant extract originating from the bark of the maritime pine that grows along the coast of southwest France and is found to contain a unique combination of procyanidins, bioflavonoids and organic acids, which offer extensive natural health benefits. The extract has been widely studied for the past 35 years and has more than 220 published studies and review articles ensuring safety and efficacy as an ingredient. Today, Pycnogenol® is available in more than 600 dietary supplements, multi-vitamins and health products worldwide.

Melanie Nimrodi | EurekAlert!
Further information:
http://www.pycnogenol.com

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>