Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rats on a road trip reveal pollution-heart disease risk

Rats that rode in a truck on the New York State Thruway between Rochester and Buffalo and were exposed to the same highway pollution that motorists encounter, showed a drop in heart rate and effects on the autonomic nervous system, according to a study published this month in the journal Inhalation Toxicology.

The University of Rochester research helps to explain a disturbing trend noted by epidemiologists: that on smoggy days in urban areas, hospitals report a sharp rise in visits to emergency rooms for treatment of heart attacks.

In humans, disruption of the autonomic nervous system could lead to serious health risks, particularly for people who already have heart disease. Such disruptions are associated with arrhythmia, and sometimes forewarn an early death after a heart attack, said Alison Elder, Ph.D., lead author of the study and a research assistant professor in the Department of Environmental Medicine.

"The fact that exposure to air pollution can change the heart rate, independent of other factors, is a cause for concern," Elder said. "It's important to understand that these changes are taking place outside of the lung. Air pollution is either having a direct effect on the heart in rats or is altering something within the circulatory system."

The investigation began with the hypothesis that rats exposed to fresh vehicle emissions would show the same adverse outcomes that had been documented in a recent European study of humans. That study showed that people exposed to air pollution while riding in a bus or car or cycling to work were more likely to suffer a heart attack within one hour of their morning commute.

Rochester researchers placed aged hypertensive rats in a mobile laboratory for six hours on Interstate 90 in western New York for a total of 320 miles. The rats inhaled aerosols that any motorist would likely inhale on the same route. Researchers monitored the rats' blood pressure, heart rate and took electrocardiogram readings during the trip. Post-exposure recordings began 30 minutes after the trip and continued for five days.

Results showed a maximum drop in heart rate of 40 beats per minute, or a 10 percent decline. The effect persisted for up to 14 hours. In addition, researchers found a 70 percent decrease in the vagosympathetic balance, which is an index of heart rate variability and how the autonomic nervous system responds to change.

Studies such as this one are helping scientists understand why vehicle emissions, even at low levels, cause cardiovascular problems in addition to respiratory problems.

The biggest culprit seems to be the tiniest of air particles, known as ultrafines. They are 60,000 times more numerous than coarse particles found in air pollution. Ultrafines in ambient air are especially harmful because they mix with reactive gases and are taken deep into the lungs as aerosols. At that point, they may interact with the cells that line the blood vessels and enter the circulatory system.

Elder's group is the first to report a link between freshly generated engine emissions and changes in the rat autonomic nervous system, which controls the heart and other key organs.

The investigators are now looking at how on-road aerosols affect blood platelets, which could impact clotting and other essential circulatory functions, Elder said.

Leslie Orr | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>