Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rats on a road trip reveal pollution-heart disease risk

01.02.2007
Rats that rode in a truck on the New York State Thruway between Rochester and Buffalo and were exposed to the same highway pollution that motorists encounter, showed a drop in heart rate and effects on the autonomic nervous system, according to a study published this month in the journal Inhalation Toxicology.

The University of Rochester research helps to explain a disturbing trend noted by epidemiologists: that on smoggy days in urban areas, hospitals report a sharp rise in visits to emergency rooms for treatment of heart attacks.

In humans, disruption of the autonomic nervous system could lead to serious health risks, particularly for people who already have heart disease. Such disruptions are associated with arrhythmia, and sometimes forewarn an early death after a heart attack, said Alison Elder, Ph.D., lead author of the study and a research assistant professor in the Department of Environmental Medicine.

"The fact that exposure to air pollution can change the heart rate, independent of other factors, is a cause for concern," Elder said. "It's important to understand that these changes are taking place outside of the lung. Air pollution is either having a direct effect on the heart in rats or is altering something within the circulatory system."

The investigation began with the hypothesis that rats exposed to fresh vehicle emissions would show the same adverse outcomes that had been documented in a recent European study of humans. That study showed that people exposed to air pollution while riding in a bus or car or cycling to work were more likely to suffer a heart attack within one hour of their morning commute.

Rochester researchers placed aged hypertensive rats in a mobile laboratory for six hours on Interstate 90 in western New York for a total of 320 miles. The rats inhaled aerosols that any motorist would likely inhale on the same route. Researchers monitored the rats' blood pressure, heart rate and took electrocardiogram readings during the trip. Post-exposure recordings began 30 minutes after the trip and continued for five days.

Results showed a maximum drop in heart rate of 40 beats per minute, or a 10 percent decline. The effect persisted for up to 14 hours. In addition, researchers found a 70 percent decrease in the vagosympathetic balance, which is an index of heart rate variability and how the autonomic nervous system responds to change.

Studies such as this one are helping scientists understand why vehicle emissions, even at low levels, cause cardiovascular problems in addition to respiratory problems.

The biggest culprit seems to be the tiniest of air particles, known as ultrafines. They are 60,000 times more numerous than coarse particles found in air pollution. Ultrafines in ambient air are especially harmful because they mix with reactive gases and are taken deep into the lungs as aerosols. At that point, they may interact with the cells that line the blood vessels and enter the circulatory system.

Elder's group is the first to report a link between freshly generated engine emissions and changes in the rat autonomic nervous system, which controls the heart and other key organs.

The investigators are now looking at how on-road aerosols affect blood platelets, which could impact clotting and other essential circulatory functions, Elder said.

Leslie Orr | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>