Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rats on a road trip reveal pollution-heart disease risk

01.02.2007
Rats that rode in a truck on the New York State Thruway between Rochester and Buffalo and were exposed to the same highway pollution that motorists encounter, showed a drop in heart rate and effects on the autonomic nervous system, according to a study published this month in the journal Inhalation Toxicology.

The University of Rochester research helps to explain a disturbing trend noted by epidemiologists: that on smoggy days in urban areas, hospitals report a sharp rise in visits to emergency rooms for treatment of heart attacks.

In humans, disruption of the autonomic nervous system could lead to serious health risks, particularly for people who already have heart disease. Such disruptions are associated with arrhythmia, and sometimes forewarn an early death after a heart attack, said Alison Elder, Ph.D., lead author of the study and a research assistant professor in the Department of Environmental Medicine.

"The fact that exposure to air pollution can change the heart rate, independent of other factors, is a cause for concern," Elder said. "It's important to understand that these changes are taking place outside of the lung. Air pollution is either having a direct effect on the heart in rats or is altering something within the circulatory system."

The investigation began with the hypothesis that rats exposed to fresh vehicle emissions would show the same adverse outcomes that had been documented in a recent European study of humans. That study showed that people exposed to air pollution while riding in a bus or car or cycling to work were more likely to suffer a heart attack within one hour of their morning commute.

Rochester researchers placed aged hypertensive rats in a mobile laboratory for six hours on Interstate 90 in western New York for a total of 320 miles. The rats inhaled aerosols that any motorist would likely inhale on the same route. Researchers monitored the rats' blood pressure, heart rate and took electrocardiogram readings during the trip. Post-exposure recordings began 30 minutes after the trip and continued for five days.

Results showed a maximum drop in heart rate of 40 beats per minute, or a 10 percent decline. The effect persisted for up to 14 hours. In addition, researchers found a 70 percent decrease in the vagosympathetic balance, which is an index of heart rate variability and how the autonomic nervous system responds to change.

Studies such as this one are helping scientists understand why vehicle emissions, even at low levels, cause cardiovascular problems in addition to respiratory problems.

The biggest culprit seems to be the tiniest of air particles, known as ultrafines. They are 60,000 times more numerous than coarse particles found in air pollution. Ultrafines in ambient air are especially harmful because they mix with reactive gases and are taken deep into the lungs as aerosols. At that point, they may interact with the cells that line the blood vessels and enter the circulatory system.

Elder's group is the first to report a link between freshly generated engine emissions and changes in the rat autonomic nervous system, which controls the heart and other key organs.

The investigators are now looking at how on-road aerosols affect blood platelets, which could impact clotting and other essential circulatory functions, Elder said.

Leslie Orr | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>