Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rats on a road trip reveal pollution-heart disease risk

01.02.2007
Rats that rode in a truck on the New York State Thruway between Rochester and Buffalo and were exposed to the same highway pollution that motorists encounter, showed a drop in heart rate and effects on the autonomic nervous system, according to a study published this month in the journal Inhalation Toxicology.

The University of Rochester research helps to explain a disturbing trend noted by epidemiologists: that on smoggy days in urban areas, hospitals report a sharp rise in visits to emergency rooms for treatment of heart attacks.

In humans, disruption of the autonomic nervous system could lead to serious health risks, particularly for people who already have heart disease. Such disruptions are associated with arrhythmia, and sometimes forewarn an early death after a heart attack, said Alison Elder, Ph.D., lead author of the study and a research assistant professor in the Department of Environmental Medicine.

"The fact that exposure to air pollution can change the heart rate, independent of other factors, is a cause for concern," Elder said. "It's important to understand that these changes are taking place outside of the lung. Air pollution is either having a direct effect on the heart in rats or is altering something within the circulatory system."

The investigation began with the hypothesis that rats exposed to fresh vehicle emissions would show the same adverse outcomes that had been documented in a recent European study of humans. That study showed that people exposed to air pollution while riding in a bus or car or cycling to work were more likely to suffer a heart attack within one hour of their morning commute.

Rochester researchers placed aged hypertensive rats in a mobile laboratory for six hours on Interstate 90 in western New York for a total of 320 miles. The rats inhaled aerosols that any motorist would likely inhale on the same route. Researchers monitored the rats' blood pressure, heart rate and took electrocardiogram readings during the trip. Post-exposure recordings began 30 minutes after the trip and continued for five days.

Results showed a maximum drop in heart rate of 40 beats per minute, or a 10 percent decline. The effect persisted for up to 14 hours. In addition, researchers found a 70 percent decrease in the vagosympathetic balance, which is an index of heart rate variability and how the autonomic nervous system responds to change.

Studies such as this one are helping scientists understand why vehicle emissions, even at low levels, cause cardiovascular problems in addition to respiratory problems.

The biggest culprit seems to be the tiniest of air particles, known as ultrafines. They are 60,000 times more numerous than coarse particles found in air pollution. Ultrafines in ambient air are especially harmful because they mix with reactive gases and are taken deep into the lungs as aerosols. At that point, they may interact with the cells that line the blood vessels and enter the circulatory system.

Elder's group is the first to report a link between freshly generated engine emissions and changes in the rat autonomic nervous system, which controls the heart and other key organs.

The investigators are now looking at how on-road aerosols affect blood platelets, which could impact clotting and other essential circulatory functions, Elder said.

Leslie Orr | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>