Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study indicates different treatment may be needed for infection-related breathing problems

01.02.2007
New research suggests that different treatments may be needed for chronic asthma, depending on whether it results from allergies or lung infections.

Previous studies have shown that certain lung infections such as Mycoplasma pneumoniae can linger on and contribute to a person later experiencing symptoms of asthma.

Researchers have now identified a particular gene that influences how severe a M. pneumoniae infection may be, which in turn suggests that a different strategy might be needed for treating asthma resulting from this and similar lung infections rather than allergies.

"What this shows is that infectious asthma might have a different mechanism than allergic asthma. Most people think asthma is asthma, but it may be multifaceted," said Dr. Robert Hardy, an infectious disease specialist at UT Southwestern.

That's an important implication because the latest statistics show that asthma is on the rise. According to the U.S. Centers for Disease Control, more than 20 million Americans currently have asthma and another 10 million have been diagnosed with asthma at some point in their life. Roughly 6.5 million American children, or nearly 9 percent of the nation's pre-adult population, have asthma, figures released in December show.

Dr. Hardy, an assistant professor of internal medicine and pediatrics, has been using mice to study how certain pneumonia bacteria contribute to chronic asthma and, in this latest study, identified how a particular gene may contribute to more severe lung infection. The research appears in the January edition of Infection and Immunity.

Pneumonia is a lung infection typically characterized by breathing difficulties and spread by coughing and sneezing. Symptoms often include headache, fever, chills, coughs, chest pains, sore throat and nausea. Dr. Hardy's research involves pneumonia caused by the bacterium M. pneumoniae, commonly called walking pneumonia, a typically less severe form of the disease that accounts for 20 percent to 30 percent of community-acquired pneumonia.

To investigate the mechanism by which M. pneumoniae causes lung disease and respiratory difficulties, the UT Southwestern researchers inoculated two different types of mice with this bacterium. The study contrasted the reaction of one normal group of mice with another group lacking a particular gene called IL-12, which is involved in immune response. The mice engineered without the gene showed significantly less lung inflammation than the mice that naturally had the gene, with some indicators showing seven times less inflammation.

"M. pneumoniae might be more of a cofactor in developing chronic asthma than a direct cause, similar to how high cholesterol or diabetes makes people more vulnerable to heart attacks," Dr. Hardy said, pointing to a number of previous studies. "It's probably not the only thing, but it's one of them. In some people it might incite asthma or it might exacerbate it."

Because the M. pneumoniae bacterium is difficult to kill and often remains in the lungs even after antibiotic treatment and the symptoms fade, Dr. Hardy said, it is important to find better treatments to prevent it from lingering.

Russell Rian | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>