Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vaginal birth increases risk of hemorrhage in newborns

01.02.2007
The first researchers to use magnetic resonance imaging (MRI) to study the brains of a large group of babies soon after birth found a small amount of bleeding in and around the brains of one in four babies who were delivered vaginally. The study appears in the February issue of Radiology.

"Small bleeds in and around the brain are very common in infants who are born vaginally," said John H. Gilmore, M.D., professor of psychiatry and Vice-Chair for Research and Scientific Affairs at the University of North Carolina School of Medicine in Chapel Hill. "It seems that a normal vaginal birth can cause these small bleeds."

For the study, 88 asymptomatic infants, equally divided between male and female, underwent MRI between the ages of one and five weeks. Sixty-five had been delivered vaginally and 23 had been delivered by cesarean section. MR images showed that 17 (26 percent) of the babies who had been delivered vaginally had intracranial hemorrhages (ICH), or small bleeds in and around the brain. Seven infants had two or more types of ICH. Prior studies have shown a smaller incidence—approximately 10 percent—of intracranial hemorrhage associated with vaginal birth.

While ICH was significantly associated with vaginal birth, it was not dependent on prolonged duration of labor or on traumatic or assisted vaginal birth.

"In our study, neither the size of the baby or the baby's head, the length of the labor, nor the use of vacuum or forceps to assist the delivery caused the bleeds," Dr. Gilmore said. "The bleeds are probably caused by pressure on the skull during delivery."

In a newborn, the bones of the skull have not fused together, so the bones of the skull can shift and frequently overlap each other during vaginal delivery, to allow the baby's head to fit through the birth canal. This shifting can compress the brain or cause blood vessels to tear, which causes bleeding.

Most of the bleeds identified were very small subdural hematomas—bleeding between the brain and the thick membrane that covers the brain below the skull—and a majority of them were located in the lower, back part of the brain over the occipital lobe or the cerebellum, which is below the occipital lobe.

Typically, small bleeds resolve over time without causing problems, though larger ones may cause problems later in the child's life, including seizures, subtle learning problems or problems with motor development.

"We just don't know at this time what these bleeds may mean over the long term," Dr. Gilmore said.

Further studies must be done to measure the long-term effects of ICH in infants, but Dr. Gilmore noted that expectant parents should not rule out vaginal delivery because of these findings.

"Obviously, the vast majority of us who were born vaginally and may have had these types of bleeds are doing just fine," he said. "Humans have been born vaginally for a very long time, and our brains probably evolved to handle vaginal birth without major difficulty."

Maureen Morley | EurekAlert!
Further information:
http://www.rsna.org

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>