Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vaginal birth increases risk of hemorrhage in newborns

01.02.2007
The first researchers to use magnetic resonance imaging (MRI) to study the brains of a large group of babies soon after birth found a small amount of bleeding in and around the brains of one in four babies who were delivered vaginally. The study appears in the February issue of Radiology.

"Small bleeds in and around the brain are very common in infants who are born vaginally," said John H. Gilmore, M.D., professor of psychiatry and Vice-Chair for Research and Scientific Affairs at the University of North Carolina School of Medicine in Chapel Hill. "It seems that a normal vaginal birth can cause these small bleeds."

For the study, 88 asymptomatic infants, equally divided between male and female, underwent MRI between the ages of one and five weeks. Sixty-five had been delivered vaginally and 23 had been delivered by cesarean section. MR images showed that 17 (26 percent) of the babies who had been delivered vaginally had intracranial hemorrhages (ICH), or small bleeds in and around the brain. Seven infants had two or more types of ICH. Prior studies have shown a smaller incidence—approximately 10 percent—of intracranial hemorrhage associated with vaginal birth.

While ICH was significantly associated with vaginal birth, it was not dependent on prolonged duration of labor or on traumatic or assisted vaginal birth.

"In our study, neither the size of the baby or the baby's head, the length of the labor, nor the use of vacuum or forceps to assist the delivery caused the bleeds," Dr. Gilmore said. "The bleeds are probably caused by pressure on the skull during delivery."

In a newborn, the bones of the skull have not fused together, so the bones of the skull can shift and frequently overlap each other during vaginal delivery, to allow the baby's head to fit through the birth canal. This shifting can compress the brain or cause blood vessels to tear, which causes bleeding.

Most of the bleeds identified were very small subdural hematomas—bleeding between the brain and the thick membrane that covers the brain below the skull—and a majority of them were located in the lower, back part of the brain over the occipital lobe or the cerebellum, which is below the occipital lobe.

Typically, small bleeds resolve over time without causing problems, though larger ones may cause problems later in the child's life, including seizures, subtle learning problems or problems with motor development.

"We just don't know at this time what these bleeds may mean over the long term," Dr. Gilmore said.

Further studies must be done to measure the long-term effects of ICH in infants, but Dr. Gilmore noted that expectant parents should not rule out vaginal delivery because of these findings.

"Obviously, the vast majority of us who were born vaginally and may have had these types of bleeds are doing just fine," he said. "Humans have been born vaginally for a very long time, and our brains probably evolved to handle vaginal birth without major difficulty."

Maureen Morley | EurekAlert!
Further information:
http://www.rsna.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>