Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vaginal birth increases risk of hemorrhage in newborns

01.02.2007
The first researchers to use magnetic resonance imaging (MRI) to study the brains of a large group of babies soon after birth found a small amount of bleeding in and around the brains of one in four babies who were delivered vaginally. The study appears in the February issue of Radiology.

"Small bleeds in and around the brain are very common in infants who are born vaginally," said John H. Gilmore, M.D., professor of psychiatry and Vice-Chair for Research and Scientific Affairs at the University of North Carolina School of Medicine in Chapel Hill. "It seems that a normal vaginal birth can cause these small bleeds."

For the study, 88 asymptomatic infants, equally divided between male and female, underwent MRI between the ages of one and five weeks. Sixty-five had been delivered vaginally and 23 had been delivered by cesarean section. MR images showed that 17 (26 percent) of the babies who had been delivered vaginally had intracranial hemorrhages (ICH), or small bleeds in and around the brain. Seven infants had two or more types of ICH. Prior studies have shown a smaller incidence—approximately 10 percent—of intracranial hemorrhage associated with vaginal birth.

While ICH was significantly associated with vaginal birth, it was not dependent on prolonged duration of labor or on traumatic or assisted vaginal birth.

"In our study, neither the size of the baby or the baby's head, the length of the labor, nor the use of vacuum or forceps to assist the delivery caused the bleeds," Dr. Gilmore said. "The bleeds are probably caused by pressure on the skull during delivery."

In a newborn, the bones of the skull have not fused together, so the bones of the skull can shift and frequently overlap each other during vaginal delivery, to allow the baby's head to fit through the birth canal. This shifting can compress the brain or cause blood vessels to tear, which causes bleeding.

Most of the bleeds identified were very small subdural hematomas—bleeding between the brain and the thick membrane that covers the brain below the skull—and a majority of them were located in the lower, back part of the brain over the occipital lobe or the cerebellum, which is below the occipital lobe.

Typically, small bleeds resolve over time without causing problems, though larger ones may cause problems later in the child's life, including seizures, subtle learning problems or problems with motor development.

"We just don't know at this time what these bleeds may mean over the long term," Dr. Gilmore said.

Further studies must be done to measure the long-term effects of ICH in infants, but Dr. Gilmore noted that expectant parents should not rule out vaginal delivery because of these findings.

"Obviously, the vast majority of us who were born vaginally and may have had these types of bleeds are doing just fine," he said. "Humans have been born vaginally for a very long time, and our brains probably evolved to handle vaginal birth without major difficulty."

Maureen Morley | EurekAlert!
Further information:
http://www.rsna.org

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>