Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIH study finds MRI more sensitive than CT in diagnosing most common form of acute stroke

30.01.2007
Results from the most comprehensive study to compare two imaging techniques for the emergency diagnosis of suspected acute stroke show that magnetic resonance imaging (MRI) can provide a more sensitive diagnosis than computed tomography (CT) for acute ischemic stroke.

The difference between MRI and CT was attributable to MRI's superiority for detection of acute ischemic stroke—the most common form of stroke, caused by a blood clot. The study was conducted by physicians at the National Institute of Neurological Disorders and Stroke (NINDS), a part of the National Institutes of Health (NIH). Findings appear in the January 27, 2007 edition of The Lancet .

"These NIH research findings on acute stroke imaging are directly applicable to real-world clinical practice," said NIH Director Elias A. Zerhouni, M.D. "The patients involved in this study were the typical cross-section of suspected stroke patients that come into emergency rooms on a daily basis."

Furthermore, the study has good news for patients, according to Walter J. Koroshetz, M.D., NINDS Deputy Director. "This study shows that approximately 25 percent of stroke patients who come to the hospital within three hours of onset, the time frame for approved clot-busting therapy, have no detectable signs of damage. In other words, brain injury may be completely avoided in some stroke victims by quick re-opening of the blocked blood vessel," said Dr. Koroshetz.

The researchers conducted the study to determine whether MRI was superior to CT for emergency diagnosis of acute ischemic and hemorrhagic stroke (caused by bleeding into the brain). Standard CT uses X-rays which are passed through the body at different angles and processed by a computer as cross-sectional images, or slices of the internal structure of the body or organ. Standard MRI uses computer-generated radio waves and a powerful magnet to produce detailed slices or three-dimensional images of body structures and nerves. A contrast dye may be used in both imaging techniques to enhance visibility of certain areas or tissues.

Study results show immediate non-contrast MRI is about five times more sensitive than and twice as accurate as immediate non-contrast CT for diagnosing ischemic stroke. Non-contrast CT and MRI were equally effective in the diagnosis of acute intracranial hemorrhage. Non-contrast CT has been the standard in emergency stroke treatment, primarily to exclude hemorrhagic stroke, which cannot be treated with clot-busting therapies.

"Many patients who come to hospitals with a suspected stroke ultimately have a different diagnosis. Most possible stroke victims are first evaluated by non-specialists, who may be reluctant to treat a patient for stroke without greater confidence in the accuracy of the diagnosis. Our results show that MRI is twice as accurate in distinguishing stroke from non-stroke," said Steven Warach, M.D., Ph.D., director of the NINDS Stroke Diagnostics and Therapeutic Section and senior investigator of the study. "Based on these results, MRI should become the preferred imaging technique for diagnosing patients with acute stroke."

The study included 356 consecutive patients with suspected stroke arriving at the NIH Stroke Center at Suburban Hospital in Bethesda, MD, a primary stroke center that is designed to stabilize and treat acute stroke patients. Stroke specialists conducted emergency clinical assessments with all patients, including the NIH Stroke Scale which is used to measure stroke severity. MRI was done prior to CT in 304 patients. Scans were initiated within two hours of each other, with a median difference of 34 minutes. Patients were excluded from the analysis if either CT or MRI was not done. The images were sorted randomly and independently by two neuroradiologists and two stroke neurologists.

Results of the study show standard MRI is superior to standard CT in detecting acute stroke and particularly acute ischemic stroke. The four readers were unanimous in their agreement on the presence or absence of acute stroke in 80 percent of patients using MRI compared to 58 percent using non-contrast CT. No significant difference using the two technologies was seen in the diagnosis of acute intracranial hemorrhage, which is consistent with previous findings.

"Although MRI is remarkably accurate in detecting early stroke damage, it can't substitute for a doctor's clinical judgment in making a stroke diagnosis and deciding upon treatment," said Dr. Koroshetz. "Future studies are needed to determine whether advanced contrast enhanced CT techniques can afford the same level of clinical information more quickly and with less expense," he added.

Margo Warren | EurekAlert!
Further information:
http://www.ninds.nih.gov

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>