Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Be afraid, be very afraid, if you learned to

25.01.2007
Study on fear responses suggests new understanding of anxiety disorders

A new study on rats has identified a part of the brain's cortex that controls learned but not innate fear responses.

The results suggest that hyperactivity in a region of the prefrontal cortex might contribute to disorders of learned fear in humans, such as post-traumatic stress disorder and other anxiety disorders, say authors Kevin A. Corcoran, PhD, and Gregory Quirk, PhD, of the Ponce School of Medicine in Puerto Rico. Their report appears in the January 24 issue of The Journal of Neuroscience.

While building on previous findings, this study contradicts prior thinking that the amygdala, which plays a central role in emotional learning, is sufficient for processing and expressing fear, and it opens the potential for new avenues of treatment, the researchers say.

"This is the first paper demonstrating that a region of the cortex is involved in learned fear but not in innate fear," says Markus Fendt, PhD, of the Novartis Institutes for Biomedical Research in Basel, Switzerland, who is not connected with the study.

In their study, Corcoran and Quirk taught rats to associate a 30-second tone with a shock to the foot at the end of the tone. Upon hearing the same tone the next day, rats spent nearly 70 percent of the time of the tone frozen, a typical fear response.

In another group of rats, the researchers chemically blocked activity in the prelimbic cortex, which is located near the front of the brain and close to the midline between the two hemispheres. These rats spent only 14 percent of the time freezing to the sound of the tone.

Yet the rats' innate, or natural, fears seemed unaffected by blocking the prelimbic cortex; they froze as much in response to seeing a cat or being placed in a large open area as they did to hearing the tone. Furthermore, when the team trained rats with the tone after chemically inactivating the prelimbic cortex, and then tested them drug-free the next day, the rats showed a normal fear response, indicating that inactivating the prelimbic cortex did not prevent them from learning to fear the tone.

The prelimbic cortex is connected to the amygdala, and, based on their findings, Corcoran and Quirk speculate that "by modulating amygdala activity, the prelimbic cortex is important for determining the circumstances in which it is appropriate to convey learned fears." In contrast, they propose that fear responses to innate threats are automatic and do not require cortical involvement.

"Corcoran and Quirk's work raises the question of whether learned fear is more controllable--for example, by higher brain functions--than innate fear," says Fendt.

Sara Harris | EurekAlert!
Further information:
http://www.sfn.org

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>