Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research study reveals new activation mechanism for pain sensing channel

24.01.2007
First-time findings describe potential new pain therapy target

The study was published January 21, 2007 in an advanced online edition of the journal Nature.

The researchers found that TRPA1, a protein that helps transmit pain signals, is a direct sensor of reactive chemicals. "While many noxious and pungent compounds were known to activate this pain receptor, we discovered that they do so by directly and irreversibly binding to the cysteine amino acids of this protein," said Ardem Patapoutian, a Scripps Research scientist whose laboratory conducted the study. "Our study shows that TRPA1 activation is directly linked to chemical insult."

"Cysteines, one of the twenty building blocks of all proteins, are known to undergo oxidation/reduction reactions," Patapoutian continued. "Somehow the TRPA1 protein is tuned to sense cysteine modifications. In fact, any cysteine reactive agent seems to activate TRPA1, although we don't know exactly how cysteine binding translates into ion channel activation."

But this activation mechanism comes with an interesting property.

"Generally, compounds that activate ion channels bind in a lock-and-key mechanism that is readily reversible," said Lindsey Macpherson, another author of the study and a Ph.D. candidate in the Scripps Research Kellogg School of Science and Technology. "The mechanism by which noxious compounds activate TRPA1 is unique. For example, compounds that activate an ion channels through a lock-and-key mechanism have structural similarity. TRPA1 activators have no structural similarity; instead, they share a common potential for chemical reactivity, and their binding is long-lasting."

TRPA1 is not unique among proteins to be activated by cysteine modifying agents, the study noted. Another signaling protein known as Kelch-like ECH-associated protein 1 (KEAP1) is activated by many of the same compounds that activate TRPA1; KEAP1 is a sensor for oxidative damage from free radicals and upregulates expression of antioxidant enzymes. Apparently, reactive compounds can activate at least two pathways through cysteine modification as a warning against cell damage, the study concluded.

"Our findings, which are the result of a successful collaboration with the Ben Cravatt and Peter Schultz labs at Scripps Research, show that modification of reactive cysteines within TRPA1 can cause channel activation," Macpherson said. "Our research efforts are now aimed at further understanding how binding of these compounds activate the channel, and identifying the physiological role of TRPA1 in sensing oxidative stress." The protein is currently being investigated by several pharmaceutical companies as a potential target for chronic pain, Patapoutian noted.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>