Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells passed from mother to child during pregnancy live on and make insulin

24.01.2007
It has been known for some years that mother and baby exchange stem cells in the course of pregnancy, and that these may live on for many years, apparently tolerated by the new host.

The phenomenon is known as microchimerism, and it is still unclear as to whether the presence of such cells can be harmful to the recipient. A Bristol team has looked for maternal cells in children with type 1 diabetes, an immune-mediated disorder, and found that around 20 per cent of these children have unusually high levels of maternal DNA in their circulation. An even more surprising finding is that some maternal cells have entered the child's pancreas and are functioning there as insulin-producing beta cells. The study, initially undertaken in the belief that maternal cells might trigger autoimmunity in the child, has now taken an interesting new twist, for the maternal cells might even be helping the child to repair injury.

In this study, published in the January 22 issue of the Proceedings of the National Academy of Sciences, Dr Kathleen Gillespie and Professor Edwin Gale from the Department of Clinicl Science @ North Bristol in collaboration with Professor J. Lee Nelson and colleagues at Fred Hutchinson Cancer Research Center, Seattle, found no evidence that the mother's cells were attacking the child's insulin cells and no evidence that the maternal cells were targets of an immune response from the child's immune system.

Instead, the researchers found a small number of female islet beta cells in male pancreatic tissue (procured from autopsies) that produced insulin. Microchimerism is the term used when an individual harbors cells or DNA that originate from another genetically distinct individual. "To our knowledge a maternal contribution to endocrine function has not previously been described," the authors said. "Our findings also raise the possibility that naturally acquired microchimerism might be exploited to therapeutic benefit."

The study also found significantly higher levels of maternal DNA in the peripheral blood of 94 children and adults with Type 1 diabetes as compared to 54 unaffected siblings and 24 unrelated healthy subjects they studied.

Originally, the study of 172 individuals and pancreatic tissue from four males was designed to ask the question whether small numbers of maternal cells might be involved in any way in Type 1 diabetes. "Our initial theory was that perhaps, in some situations, too many cells cross from mother to fetus in pregnancy. Could diabetes result because the child lost tolerance to those cells because they are genetically half foreign? Our research appears to disprove this," said Professor Gale. "It is possible that the maternal cells may even be helping to regenerate damaged tissue in the pancreas."

The investigators are excited about the observation that maternal microchimerism results in cells that make insulin - these maternal stem cells could provide new insights into how insulin producing beta cells are generated.

Joanne Fryer | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>