Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells passed from mother to child during pregnancy live on and make insulin

24.01.2007
It has been known for some years that mother and baby exchange stem cells in the course of pregnancy, and that these may live on for many years, apparently tolerated by the new host.

The phenomenon is known as microchimerism, and it is still unclear as to whether the presence of such cells can be harmful to the recipient. A Bristol team has looked for maternal cells in children with type 1 diabetes, an immune-mediated disorder, and found that around 20 per cent of these children have unusually high levels of maternal DNA in their circulation. An even more surprising finding is that some maternal cells have entered the child's pancreas and are functioning there as insulin-producing beta cells. The study, initially undertaken in the belief that maternal cells might trigger autoimmunity in the child, has now taken an interesting new twist, for the maternal cells might even be helping the child to repair injury.

In this study, published in the January 22 issue of the Proceedings of the National Academy of Sciences, Dr Kathleen Gillespie and Professor Edwin Gale from the Department of Clinicl Science @ North Bristol in collaboration with Professor J. Lee Nelson and colleagues at Fred Hutchinson Cancer Research Center, Seattle, found no evidence that the mother's cells were attacking the child's insulin cells and no evidence that the maternal cells were targets of an immune response from the child's immune system.

Instead, the researchers found a small number of female islet beta cells in male pancreatic tissue (procured from autopsies) that produced insulin. Microchimerism is the term used when an individual harbors cells or DNA that originate from another genetically distinct individual. "To our knowledge a maternal contribution to endocrine function has not previously been described," the authors said. "Our findings also raise the possibility that naturally acquired microchimerism might be exploited to therapeutic benefit."

The study also found significantly higher levels of maternal DNA in the peripheral blood of 94 children and adults with Type 1 diabetes as compared to 54 unaffected siblings and 24 unrelated healthy subjects they studied.

Originally, the study of 172 individuals and pancreatic tissue from four males was designed to ask the question whether small numbers of maternal cells might be involved in any way in Type 1 diabetes. "Our initial theory was that perhaps, in some situations, too many cells cross from mother to fetus in pregnancy. Could diabetes result because the child lost tolerance to those cells because they are genetically half foreign? Our research appears to disprove this," said Professor Gale. "It is possible that the maternal cells may even be helping to regenerate damaged tissue in the pancreas."

The investigators are excited about the observation that maternal microchimerism results in cells that make insulin - these maternal stem cells could provide new insights into how insulin producing beta cells are generated.

Joanne Fryer | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>