Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study provides first genetic evidence of long-lived African presence within Britain

24.01.2007
New research has identified the first genetic evidence of Africans having lived amongst "indigenous" British people for centuries. Their descendants, living across the UK today, were unaware of their black ancestry.

The University of Leicester study, funded by the Wellcome Trust and published today in the journal European Journal of Human Genetics, found that one third of men with a rare Yorkshire surname carry a rare Y chromosome type previously found only amongst people of West African origin.

The researchers, led by Professor Mark Jobling, of the Department of Genetics at the University of Leicester, first spotted the rare Y chromosome type, known as hgA1, in one individual, Mr. X. This happened whilst PhD student Ms. Turi King was sampling a larger group in a study to explore the association between surnames and the Y chromosome, both inherited from father to son. Mr. X, a white Caucasian living in Leicester, was unaware of having any African ancestors.

"As you can imagine, we were pretty amazed to find this result in someone unaware of having any African roots," explains Professor Jobling, a Wellcome Trust Senior Research Fellow. "The Y chromosome is passed down from father to son, so this suggested that Mr. X must have had African ancestry somewhere down the line. Our study suggests that this must have happened some time ago."

Although most of Britain's one million people who define themselves as "Black or Black British" owe their origins to immigration from the Caribbean and Africa from the mid-twentieth century onwards, in reality, there has been a long history of contact with Africa. Africans were first recorded in the north 1800 years ago, as Roman soldiers defending Hadrian’s Wall.

To investigate the origins of hgA1 in Britain, the team recruited and studied a further eighteen males with the same surname as Mr. X. All but one were from the UK, with paternal parents and grandparents also born in Britain. Six, including one male in the US whose ancestors had migrated from England in 1894, were found to have the hgA1 chromosome.

Further genealogical research to identify a common ancestor for all seven X-surnamed males suggests that the hgA1 Y chromosome must have entered their lineage over 250 years ago. However, it is unclear whether the male ancestor was a first generation African immigrant or a European man carrying an African Y chromosome introduced into Britain some time earlier, or even whether the hgA1 Y chromosome goes back as far as the Roman occupation.

"This study shows that what it means to be British is complicated and always has been," says Professor Jobling. "Human migration history is clearly very complex, particularly for an island nation such as ours, and this study further debunks the idea that there are simple and distinct populations or 'races'."

In addition, Professor Jobling believes that the research may have implications for DNA profiling in criminal investigations.

"Forensic scientists use DNA analysis to predict a person's ethnic origins, for example from hair or blood samples found at a crime scene. Whilst they are very likely to predict the correct ethnicity by using wider analysis of DNA other than the Y chromosome, finding this remarkable African chromosome would certainly have them scratching their heads for a while."

Craig Brierley | alfa
Further information:
http://www.wellcome.ac.uk

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>