Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rotting leaf litter study could lead to more accurate climate models

22.01.2007
Over the past decade, in numerous field sites throughout the world, mesh bags of leaf and root litter sat exposed to the elements, day and night, throughout the four seasons, gradually rotting away.

Now, those bags of decomposing organic matter have allowed a research team led by scientists at the University of California, Berkeley, and Colorado State University to produce an elegant and simple set of equations to calculate the nitrogen released into the soil during decomposition, which in turn could significantly improve the accuracy of global climate change models.

The researchers found that the dominant drivers of nitrogen release were the initial concentration of nitrogen and the remaining mass of the leaf and root litter. The equations and how the researchers developed them are described in the Jan. 19 issue of the journal Science.

"In the world of complex biogeochemistry, we've discovered that this fundamental process of nutrient cycling by plants and microbes turns out to be relatively straightforward," said Whendee Silver, professor of ecosystem sciences at UC Berkeley's College of Natural Resources and co-lead author of the study. "Whether it's hot or cold, wet or dry, the equations work. This study highlights the fact that, for microbes, there is a fundamental physiological constraint controlling nitrogen release during decomposition. It took a large-scale, long term study like this to help us see how simple these processes can be."

The project, known as the Long-Term Inter-site Decomposition Experiment, involved 21 field sites. The sites represent seven biomes, from the tundra to tropical forests, encompassing the array of climatic conditions around the world. Many of the sites were part of the Long Term Ecological Research Network sponsored by the National Science Foundation.

Each mesh bag included leaf or root litter, such as pine needles, wheat straw, sugar maple leaves or grass roots. The samples were chosen to represent a wide range of chemical composition.

At each site, dozens of bags were staked to the ground and left to rot. Every year, researchers at the sites would remove a subset of bags so their contents could be dried, weighed and sent to a central lab at Oregon State University for analysis. At the central lab, the contents were weighed a second time and analyzed for their chemical composition.

"The most important component of this study is that we've developed a generic global law that can predict large-scale patterns in litter mass decay rates and nitrogen release from litter," said William Parton, senior research scientist at the Natural Resource Ecology Laboratory at Colorado State University and co-lead author of the study. "There are a lot of global nutrient cycling models out there, but the model we've developed is based on only two parameters, and thus is more scientifically elegant and more widely applicable than the models currently being used."

More than three-fourths of the air we breathe contains nitrogen, an essential element found in all amino acids, the building blocks of protein. In the soil, organic forms of nitrogen are converted by bacteria into the inorganic forms of ammonium and nitrate, primary nutrients plants need for growth. Lack of nitrogen limits plant growth in most regions of the world.

The researchers point out that the cycling of nutrients and carbon in the ecosystem is a key variable in climate change models. "As people try to construct computer models and predict future climate changes, being able to accurately predict carbon and nitrogen cycling will play a key role," said Silver.

While the study improves the ability of scientists to predict the rate of nitrogen release in climate models, the researchers point out that the findings could also improve predictions for the amount of carbon released into the atmosphere from decomposing litter.

"The debate is whether the enhanced litter decay rate from warming will also increase the release of carbon from ecosystems," said Parton. "When you increase litter decomposition rates, you are enhancing carbon dioxide release to the atmosphere. Our study provides algorithms to better predict the rates of these processes under a wide range of conditions."

The researchers found that the rate of decomposition, not nitrogen release, was affected by the two key variables of temperature and moisture. The slowest rates of decomposition were in cold regions, such as boreal forests and tundra, and the fastest in the warm, moist, tropical forests. The only places where litter decomposed completely were the humid tropical sites where, over the course of five years, only 10 percent of the initial litter material remained.

Notably, there was one exception where the model did not apply. "Arid grasslands didn't fit the model because the nitrogen release in those environments is likely to be controlled by exposure to UV radiation," said Silver. "The leaves decomposed faster than they should have based upon the climate alone, and released nitrogen faster than the model predicted based on the initial nitrogen concentrations. The most probable explanation is that systems exposed to high UV radiation circumvent the biological processes in other ecosystems."

Sarah Yang | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>