Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Walking molecule now carries packages

Molecule walks in a straight line and carries a tiny shopping bag in each hand

A research team, led by UC Riverside's Ludwig Bartels, was the first to design a molecule that can move in a straight line on a flat surface. Now this team has found a way to attach cargo: two CO2 molecules, making the nano-walker a molecule carrier.

The work will be published Thursday, Jan. 18 in "Science Express" and later in the print-version of the journal "Science."

"This is an unprecedented step forward towards the realization of molecular-scale machinery," said Bartels, associate professor of chemistry and a member of UCR's Center for Nanoscale Science and Engineering. "Our experiments show a means to transport molecules reliably. This will become as important to the molecular machinery of the future as trucks and conveyor belts are for factories of today."

The last paper Bartels and his team published on this subject generated a great deal of interest. It was included in the American Institute of Physics "Top 25 Physics Stories for 2005." The new molecule carrier runs on a copper surface. It can pick up and release up to two carbon dioxide (CO2) molecules and carry them along its straight path.

"Carrying a load slows the molecule down" explained Bartels. "Attachment of one CO2 molecule makes the carrier need twice as much energy for a step, and a carrier with two CO2s requires roughly three times the energy. This is not unlike a human being carrying heavy loads in one or both hands." Bartels explained that using machines at the scale of single molecules will ultimate be the most efficient way to build objects or to deliver material.

"It resembles the way nature does it: the molecule carrier transports carbon dioxide across a surface," he said. "In the human body, the molecule hemoglobin carries oxygen from and carbon dioxide to the lungs, thereby allowing us to breathe – and to live."

Bartels cautions, however, that this research is still in its infancy. "In 2005 we invented the molecular walker, which moves in a straight line rather than hopping around in all directions as a normal molecule would do. Now it can carry a load."

Bartels said the continuing evolutionary process will take some time.

"Ten years ago, a cell phone could just place calls, nothing else. Now it plays mp3-files, organizes your day, lets you send emails and browse the web." He said his team will be pursuing the next step for this molecule carrier. "Next, we would like to be able to make one go around corners, rotate its cargo or send out photons to tell us where it is."

The molecule carrier is anthraquinone, which consists of three fused benzene rings with one oxygen atom on each side. An organic compound, anthraquinone is widely used in the pulp industry for turning cellulose from wood into paper. It is also the parent substance of a large class of dyes and pigments. Its chemical formula is C14H8O2.

The UCR study used a scanning tunneling microscope in Bartels's laboratory that gives a precise picture of individual molecules. Experiments took place on a highly polished copper surface, cleaned so that only the desired molecules were present on it. An individual anthraquinone molecule appears in Bartels' microscope as an almost rectangular feature with slightly rounded edges.

Kris Lovekin | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>