Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Walking molecule now carries packages

22.01.2007
Molecule walks in a straight line and carries a tiny shopping bag in each hand

A research team, led by UC Riverside's Ludwig Bartels, was the first to design a molecule that can move in a straight line on a flat surface. Now this team has found a way to attach cargo: two CO2 molecules, making the nano-walker a molecule carrier.

The work will be published Thursday, Jan. 18 in "Science Express" and later in the print-version of the journal "Science."

"This is an unprecedented step forward towards the realization of molecular-scale machinery," said Bartels, associate professor of chemistry and a member of UCR's Center for Nanoscale Science and Engineering. "Our experiments show a means to transport molecules reliably. This will become as important to the molecular machinery of the future as trucks and conveyor belts are for factories of today."

The last paper Bartels and his team published on this subject generated a great deal of interest. It was included in the American Institute of Physics "Top 25 Physics Stories for 2005." The new molecule carrier runs on a copper surface. It can pick up and release up to two carbon dioxide (CO2) molecules and carry them along its straight path.

"Carrying a load slows the molecule down" explained Bartels. "Attachment of one CO2 molecule makes the carrier need twice as much energy for a step, and a carrier with two CO2s requires roughly three times the energy. This is not unlike a human being carrying heavy loads in one or both hands." Bartels explained that using machines at the scale of single molecules will ultimate be the most efficient way to build objects or to deliver material.

"It resembles the way nature does it: the molecule carrier transports carbon dioxide across a surface," he said. "In the human body, the molecule hemoglobin carries oxygen from and carbon dioxide to the lungs, thereby allowing us to breathe – and to live."

Bartels cautions, however, that this research is still in its infancy. "In 2005 we invented the molecular walker, which moves in a straight line rather than hopping around in all directions as a normal molecule would do. Now it can carry a load."

Bartels said the continuing evolutionary process will take some time.

"Ten years ago, a cell phone could just place calls, nothing else. Now it plays mp3-files, organizes your day, lets you send emails and browse the web." He said his team will be pursuing the next step for this molecule carrier. "Next, we would like to be able to make one go around corners, rotate its cargo or send out photons to tell us where it is."

The molecule carrier is anthraquinone, which consists of three fused benzene rings with one oxygen atom on each side. An organic compound, anthraquinone is widely used in the pulp industry for turning cellulose from wood into paper. It is also the parent substance of a large class of dyes and pigments. Its chemical formula is C14H8O2.

The UCR study used a scanning tunneling microscope in Bartels's laboratory that gives a precise picture of individual molecules. Experiments took place on a highly polished copper surface, cleaned so that only the desired molecules were present on it. An individual anthraquinone molecule appears in Bartels' microscope as an almost rectangular feature with slightly rounded edges.

Kris Lovekin | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>