Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovered A New Protein Complex That Plays An Important Role In Organ Formation, Cellular Development And Cicatrisation Process

19.01.2007
Cellular movements are essential in organ formation processes, in cellular development and cicatrisation processes. These processes are directed and orchestrated by the formation of specific protein complexes translating information coming from cellular contacts.

In a study carried out by a group of Spanish and German scientists a new protein complex that plays an important role in the orchestration of the above-mentioned processes has been discovered. This complex demonstrates the existence of a new control mechanism in the cellular movements involved in the early development (gastrulation).

As an innovative feature, this study, that will be published next Friday, 19th January, at the prestigious scientific journal Science, has used the computer design “in silico” to direct the experimental work, developed by the research group of the Spanish scientist Luis Serrano. This has allowed avoiding the tedious lab trials that, in many cases, don’t lead anywhere and/or are redundant. Particularly, the use of protein design software and structural information has allowed sifting the genome of the vinegar fly (Drosophila) and predicting the interaction of two proteins (T48 y RhoGEF2).

The use of protein design software to predict the protein-protein or protein-DNA interaction opens de door to discovering other protein-protein interactions and, the most important aspect for human health, predicting the functional effect of variations in the human genome with implications in the customized medicine.

As for the identification of a new regulation pathway of the gastrulation process in the development of the vinegar fly, it will allow to look for similar mechanisms in human individuals that might be involved in embryonic malformations related to cellular migratory processes.

The study has been directed by Maria Leptin, from the University of Cologne, in Germany. The design and prediction aspects have been developed by the Spanish scientists Luis Serrano, who has just left the leadership of the Structural and Computational Biology programme at the European Molecular Biology Laboratory (EMBL) to lead the Systems Biology programme at the Centre for Genomic Regulation, in Barcelona, and Gregorio Fernández, from the Cellular and Molecular Biology Institute, of the University Miguel Hernández, in Elche.

Gloria Lligadas | alfa
Further information:
http://www.crg.es

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>