Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies common flaws in oncology microarray studies

18.01.2007
A substantial percentage of microarray-based studies in oncology contain critical flaws in analysis or in their conclusions, reports a study in the January 17 issue of the Journal of the National Cancer Institute. The study's authors provide a checklist and a set of guidelines for performing and reporting such studies.

Microarrays are a tool used to study gene expression. Researchers can study thousands of genes at a time, all on a single glass slide. In oncology, scientists have used microarrays to study unique gene expression patterns of specific tumor types, to discover new drug targets, and to categorize unique characteristics of a particular tumor to help doctors tailor treatments to an individual patient. However, such studies produce volumes of data that is easily misinterpreted. It has been difficult to replicate such studies, which is considered the best way to validate scientific findings.

To study the statistical methods used in cancer-focused microarray studies, Alain Dupuy, M.D., and Richard M. Simon, D.Sc., of the National Cancer Institute in Bethesda, Md., reviewed 90 studies published through the end of 2004 that related microarray expression profiling to clinical outcome. The most common cancers in those studies were hematologic malignancies (24 studies), lung cancer (12 studies), and breast cancer (12 studies). The studies fell into three general categories: an outcome-related gene finding, such as searching for specific genes that are expressed differently in people who have a good versus bad prognosis; a class discovery, where researchers cluster together tumors with similar gene expression profiles; and supervised prediction, in which the gene expression profiles are used to generate an algorithm or set of rules that will predict clinical outcomes for patients based on their individual gene expression profiles.

The authors closely scrutinized the statistical methods and reporting in 42 studies published in 2004. Half of these studies (21) contained at least one basic flaw. In the 23 studies with an outcome-related gene finding, nine of them had inadequate, unclear, or unstated methods to take into account false-positive findings. In 13 of the 28 studies focused on class discovery, there were spurious claims of meaningful classifications of outcomes, in which the authors did not perform adequate analyses to reach their conclusions. Among the 28 studies reporting supervised prediction, Dupuy and Simon found that 12 of those studies used biased estimates of the accuracy of their predictions.

"…Microarray studies are a fast-growing area for both basic and clinical research with an exponentially growing number of publications," the authors write. "As demonstrated by our results, common mistakes and misunderstandings are pervasive in studies published in good-quality, peer-reviewed journals." To avoid such errors, Dupuy and Simon provide guidelines in the form of a list of "Do's and Don'ts" for researchers. "We believe that following these guidelines should substantially improve the quality of analysis and reporting of microarray investigations," the authors write.

Andrea Widener | EurekAlert!
Further information:
http://jnci.oxfordjournals.org/

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>