Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The musician in the mirror

17.01.2007
New study shows brain rapidly forms link between sounds and actions that produce them

A new imaging study shows that when we learn a new action with associated sounds, the brain quickly makes links between regions responsible for performing the action and those associated with the sound.

The findings may contribute to understanding how we acquire language and how we think of actions if we only hear their sounds, say authors Amir Lahav, ScD, and Gottfried Schlaug, MD, PhD, of the neurology department at Beth Israel Deaconess Medical Center and Harvard Medical School. Their work is described in the January 10 issue of The Journal of Neuroscience.

"The findings have implications for understanding many complex processes, such as speech and music performance," says Robert Zatorre, PhD, "and they could encourage research into rehabilitative strategies using sound-movement tasks." Zatorre heads the auditory cognitive neuroscience laboratory at McGill University.

The authors also suggest that their findings provide evidence for the existence of a mirror neuron system in humans. Mirror neurons, first described in monkeys, are active not only when the monkey performs an action, but also when it sees the action performed by others or only hears the sound associated with the action. Some scientists debate their existence and function in humans.

The researchers taught nine subjects with no previous musical training to play a five-note, 24-second song on a keyboard. Then they ran functional magnetic resonance imaging (fMRI) scans while the subjects listened to the song they had just learned, a different song using the same five notes, and a third song made up of additional notes.

When the subjects listened to the familiar music, their brains showed activity in a network of areas in the frontal and parietal lobes that are involved in the control of movements. The authors note that Broca's area, the human equivalent of the area in the brain where mirror neurons were found in monkeys, was particularly active when subjects listened to music they knew how to play compared with equally familiar music they did not know how to play.

"Mirror-neuron circuits appear to encode and reflect templates for specific actions," the authors say. "This may allow us to comprehend motor acts when they are observed or heard, without the need for explicit reasoning about them." The authors also suggest that the sound-related functions of a mirror-neuron system "might have developed for survival reasons, allowing us to understand actions even when they cannot be observed, but can only be heard, as when we hear footsteps in the dark."

Sara Harris | EurekAlert!
Further information:
http://www.bidmc.harvard.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>