Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The musician in the mirror

17.01.2007
New study shows brain rapidly forms link between sounds and actions that produce them

A new imaging study shows that when we learn a new action with associated sounds, the brain quickly makes links between regions responsible for performing the action and those associated with the sound.

The findings may contribute to understanding how we acquire language and how we think of actions if we only hear their sounds, say authors Amir Lahav, ScD, and Gottfried Schlaug, MD, PhD, of the neurology department at Beth Israel Deaconess Medical Center and Harvard Medical School. Their work is described in the January 10 issue of The Journal of Neuroscience.

"The findings have implications for understanding many complex processes, such as speech and music performance," says Robert Zatorre, PhD, "and they could encourage research into rehabilitative strategies using sound-movement tasks." Zatorre heads the auditory cognitive neuroscience laboratory at McGill University.

The authors also suggest that their findings provide evidence for the existence of a mirror neuron system in humans. Mirror neurons, first described in monkeys, are active not only when the monkey performs an action, but also when it sees the action performed by others or only hears the sound associated with the action. Some scientists debate their existence and function in humans.

The researchers taught nine subjects with no previous musical training to play a five-note, 24-second song on a keyboard. Then they ran functional magnetic resonance imaging (fMRI) scans while the subjects listened to the song they had just learned, a different song using the same five notes, and a third song made up of additional notes.

When the subjects listened to the familiar music, their brains showed activity in a network of areas in the frontal and parietal lobes that are involved in the control of movements. The authors note that Broca's area, the human equivalent of the area in the brain where mirror neurons were found in monkeys, was particularly active when subjects listened to music they knew how to play compared with equally familiar music they did not know how to play.

"Mirror-neuron circuits appear to encode and reflect templates for specific actions," the authors say. "This may allow us to comprehend motor acts when they are observed or heard, without the need for explicit reasoning about them." The authors also suggest that the sound-related functions of a mirror-neuron system "might have developed for survival reasons, allowing us to understand actions even when they cannot be observed, but can only be heard, as when we hear footsteps in the dark."

Sara Harris | EurekAlert!
Further information:
http://www.bidmc.harvard.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>