Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The musician in the mirror

17.01.2007
New study shows brain rapidly forms link between sounds and actions that produce them

A new imaging study shows that when we learn a new action with associated sounds, the brain quickly makes links between regions responsible for performing the action and those associated with the sound.

The findings may contribute to understanding how we acquire language and how we think of actions if we only hear their sounds, say authors Amir Lahav, ScD, and Gottfried Schlaug, MD, PhD, of the neurology department at Beth Israel Deaconess Medical Center and Harvard Medical School. Their work is described in the January 10 issue of The Journal of Neuroscience.

"The findings have implications for understanding many complex processes, such as speech and music performance," says Robert Zatorre, PhD, "and they could encourage research into rehabilitative strategies using sound-movement tasks." Zatorre heads the auditory cognitive neuroscience laboratory at McGill University.

The authors also suggest that their findings provide evidence for the existence of a mirror neuron system in humans. Mirror neurons, first described in monkeys, are active not only when the monkey performs an action, but also when it sees the action performed by others or only hears the sound associated with the action. Some scientists debate their existence and function in humans.

The researchers taught nine subjects with no previous musical training to play a five-note, 24-second song on a keyboard. Then they ran functional magnetic resonance imaging (fMRI) scans while the subjects listened to the song they had just learned, a different song using the same five notes, and a third song made up of additional notes.

When the subjects listened to the familiar music, their brains showed activity in a network of areas in the frontal and parietal lobes that are involved in the control of movements. The authors note that Broca's area, the human equivalent of the area in the brain where mirror neurons were found in monkeys, was particularly active when subjects listened to music they knew how to play compared with equally familiar music they did not know how to play.

"Mirror-neuron circuits appear to encode and reflect templates for specific actions," the authors say. "This may allow us to comprehend motor acts when they are observed or heard, without the need for explicit reasoning about them." The authors also suggest that the sound-related functions of a mirror-neuron system "might have developed for survival reasons, allowing us to understand actions even when they cannot be observed, but can only be heard, as when we hear footsteps in the dark."

Sara Harris | EurekAlert!
Further information:
http://www.bidmc.harvard.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>