Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USGS examines environmental impacts of aircraft de-icers

12.01.2007
The U.S. Geological Survey (USGS) has been examining the relative toxicity to aquatic life from a variety of formulations used to remove or prevent dangerous ice buildup on aircraft.

A recent study has confirmed that proprietary additives are responsible for the observed toxicity. This USGS study, published in the journal Environmental Science & Technology, compared nine different formulations. Neither the primary ingredients (ethylene glycol and propylene glycol) nor the known additives accounted for all observed toxicity of these formulations.

Additives are included to improve a formulation's effectiveness. Those that are proprietary have compositions known only to the manufacturer. Although research conducted in the mid 1990's revealed the toxicity of proprietary additives, this study compared numerous de-icers and anti-icers and confirmed that most still have toxic additives that have not been publicly identified.

"This study suggests that some de-icers -- products that remove snow and ice buildup – that are currently in use are safer for the environment than the de-icers used in the 1990's," said Steve Corsi, USGS scientist and lead author of this study. "But the toxicity profiles of anti-icers -- products that prevent ice and snow buildup -- have not changed significantly."

For this study, completed in cooperation with Milwaukee's General Mitchell International Airport and the Dallas-Fort Worth Airport, formulations were collected directly from storage tanks and de-icing vehicles and tested on minnows, water fleas, green alga, and marine bacterium. These organisms are near the bottom of the food chain and are common benchmark indicators of environmental health. The sensitivity of tested organisms varied according to a number of factors including formulation of the product. Concentrations of deicer and anti-icer components previously observed in airport effluents have, at times, exceeded the toxicity levels shown in results of this study.

Study results indicated that anti-icers are more toxic than de-icers due to the larger percent of additives contained in anti-icers. The package of additives used in these fluids varies between manufacturer and type of formulation. In addition, some additives are of special concern not only due to the toxicity of the additive, but because they can become increasingly toxic as they degrade in the environment.

"Airports in cold climates throughout the world use de-icers or anti-icers nearly every day during the winter, and those in warmer climates also must use them periodically. The most intensive de-icing and anti-icing application often occurs during extreme weather conditions including periods of snow, freezing rain, and high winds. This occasionally makes it difficult to contain the spent fluids and they are released to the environment. While they are a necessity for aviation safety, these products are potential environmental contaminants," said Corsi.

The U.S. EPA acknowledges that there is environmental impact from aircraft de-icers and anti-icers and is studying possible guidelines in consideration of national regulation to limit its runoff from airports. Many airports have implemented measures to reduce runoff of chemicals into the environment, so the fate of these substances varies depending on the individual airport and weather conditions during their use.

"Certainly, the primary concern of an airline passenger is a safe arrival at their destination," said Corsi. "Airports have improved spent de-icer collection systems and airlines are considering application methods to reduce the amount of fluids applied. Ultimately, it will take a combined effort from fluid manufacturers, airlines, and airports to continue reducing the environmental impact of aircraft de-icers and anti-icers while maintaining the highest level of safety."

The additives are used in de-icers and anti-icers to facilitate product application, ensure that the product will adhere to aircraft wings and fuselage, and enhance its overall effectiveness.

Steven Corsi | EurekAlert!
Further information:
http://www.usgs.gov

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>