Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


USGS examines environmental impacts of aircraft de-icers

The U.S. Geological Survey (USGS) has been examining the relative toxicity to aquatic life from a variety of formulations used to remove or prevent dangerous ice buildup on aircraft.

A recent study has confirmed that proprietary additives are responsible for the observed toxicity. This USGS study, published in the journal Environmental Science & Technology, compared nine different formulations. Neither the primary ingredients (ethylene glycol and propylene glycol) nor the known additives accounted for all observed toxicity of these formulations.

Additives are included to improve a formulation's effectiveness. Those that are proprietary have compositions known only to the manufacturer. Although research conducted in the mid 1990's revealed the toxicity of proprietary additives, this study compared numerous de-icers and anti-icers and confirmed that most still have toxic additives that have not been publicly identified.

"This study suggests that some de-icers -- products that remove snow and ice buildup – that are currently in use are safer for the environment than the de-icers used in the 1990's," said Steve Corsi, USGS scientist and lead author of this study. "But the toxicity profiles of anti-icers -- products that prevent ice and snow buildup -- have not changed significantly."

For this study, completed in cooperation with Milwaukee's General Mitchell International Airport and the Dallas-Fort Worth Airport, formulations were collected directly from storage tanks and de-icing vehicles and tested on minnows, water fleas, green alga, and marine bacterium. These organisms are near the bottom of the food chain and are common benchmark indicators of environmental health. The sensitivity of tested organisms varied according to a number of factors including formulation of the product. Concentrations of deicer and anti-icer components previously observed in airport effluents have, at times, exceeded the toxicity levels shown in results of this study.

Study results indicated that anti-icers are more toxic than de-icers due to the larger percent of additives contained in anti-icers. The package of additives used in these fluids varies between manufacturer and type of formulation. In addition, some additives are of special concern not only due to the toxicity of the additive, but because they can become increasingly toxic as they degrade in the environment.

"Airports in cold climates throughout the world use de-icers or anti-icers nearly every day during the winter, and those in warmer climates also must use them periodically. The most intensive de-icing and anti-icing application often occurs during extreme weather conditions including periods of snow, freezing rain, and high winds. This occasionally makes it difficult to contain the spent fluids and they are released to the environment. While they are a necessity for aviation safety, these products are potential environmental contaminants," said Corsi.

The U.S. EPA acknowledges that there is environmental impact from aircraft de-icers and anti-icers and is studying possible guidelines in consideration of national regulation to limit its runoff from airports. Many airports have implemented measures to reduce runoff of chemicals into the environment, so the fate of these substances varies depending on the individual airport and weather conditions during their use.

"Certainly, the primary concern of an airline passenger is a safe arrival at their destination," said Corsi. "Airports have improved spent de-icer collection systems and airlines are considering application methods to reduce the amount of fluids applied. Ultimately, it will take a combined effort from fluid manufacturers, airlines, and airports to continue reducing the environmental impact of aircraft de-icers and anti-icers while maintaining the highest level of safety."

The additives are used in de-icers and anti-icers to facilitate product application, ensure that the product will adhere to aircraft wings and fuselage, and enhance its overall effectiveness.

Steven Corsi | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>