Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings blow a decade of assumptions out of the water

12.01.2007
The Atlantic Ocean doesn't receive the mother lode of fixed nitrogen, the building block of life, after all. Instead, comparing fathom for fathom, the Pacific and Indian oceans experience twice the amount of nitrogen fixing as the Atlantic, say researchers in the Jan. 11 issue of Nature.

The title of an accompanying News and Views piece says it all, "Looking for N2 Fixation in all the Wrong Places."

It's important to have a global picture of where nitrogen fixation is occurring – that is where nitrogen gas is being converted into substances like nitrate that are usable by life – in order to understand the environmental controls on nitrogen fixation and its likely response to climate change in the past and in the future, says Curtis Deutsch, a University of Washington research assistant and lead author of a paper in the Jan. 11 issue of Nature. The new research, for example, indicates that the inventory of nitrogen in the oceans is likely to be less subject to major fluctuations than had been assumed.

Because it has been thought that nitrogen fixation is limited without enough iron, the conventional wisdom for the past decade dictated that the Atlantic Ocean would be the prime site for fixing nitrogen. That's because compared to the other low-latitude oceans, the Atlantic is peppered with iron-laden dust blowing off the African continent.

Winds can't carry such dust all the way across the Pacific Ocean because it is so vast. Iron may still be a limiting factor in nitrogen fixation, but if it is, then the Pacific and Indian oceans are getting iron from some source other than atmospheric dust, Deutsch says.

The new research also means places where nitrogen is being fixed by certain microorganisms are in close proximity to where it is being pulled back apart into its gaseous state by a different kind of micoorganism, he says.

Nitrogen gas, N2, is unusable by life. It has to be fixed, that is, latched onto other chemicals to form compounds such as nitrate, NO3. Only then can it be used to build amino acids and proteins essential to all life.

Eventually the fixed nitrogen is returned to its gaseous state, a process called denitrification. Scientists have known for several decades that denitrification occurs in the deep, low-oxygen waters of the Pacific and Indian oceans.

If the Atlantic was the site of a lot of nitrogen fixation, that would have put the two processes half a world away from each other. Scientists had estimated that, at those distances, it could take 1,000 years to re-balance the ocean's nitrogen cycle if large-scale changes were to occur in either nitrogen fixation or denitrification – if climate change altered ocean temperatures and the rates of the two processes, for instance.

The new findings show the processes are happening within a few hundred miles of each other so the balance could be reached within a decade, the authors estimate. Deutsch compares the old assumption to a house where the thermostat is many rooms away from a window that has swung open, letting in cold air. The house could get quite chilly before the draft reaches the thermostat and the furnace turns on. But if the thermostat is in the same room as the window, the furnace will turn on and even out the temperature much faster.

In his research Deutsch used a novel analysis of surface nutrients in the world's oceans that relied on several decades of existing large-scale data on nitrogen-to-phosphorous ratios, phosphorous also playing a major role in primary production. His work has been supported by a NASA Earth System Science Fellowship and the UW Program on Climate Change.

"There has been a great deal of controversy in the literature as to whether fixed nitrogen in the ocean remains constant with time or fluctuates widely," says Jorge Sarmiento, professor of geosciences at Princeton University and one of the co-authors. "This study is a major advance for those of us who have been arguing that it is relatively stable."

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>