Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study shows promise of genomics in environmental monitoring

22.12.2006
A new study led by researchers at the University of California, Berkeley, identifies specific gene expression changes in a species of water flea in response to contaminants, lending new support for the role of toxicogenomics in environmental monitoring.

The study, published online today (Wednesday, Dec. 20) in the journal Environmental Science & Technology, focused on the water flea Daphnia magna, considered the lab rat of ecotoxicology because of its sensitivity to contaminants in its environment. The organism is commonly used by regulators to monitor freshwater toxicity, but the tests used typically look at levels of toxicity that will kill the water flea within 24 hours of exposure.

Those tests employ "a 'kill 'em and count 'em' technique that doesn't provide a great deal of insight into the mechanism of action," said Dr. Chris Vulpe, associate professor of nutritional sciences and toxicology at UC Berkeley's College of Natural Resources and principal investigator of the study.

There also is a chronic toxicity test that assesses the impact of lower levels of exposure on reproduction, but again, exactly how the toxicant is affecting the organism is unclear, the researchers said.

But with toxicogenomics, scientists are hoping to understand toxicants based upon characteristic changes in an organism's gene expression. "By looking at the pattern of genes turned on and off in response to toxicants, we can get an idea of what is causing the toxicity," said Vulpe, who is also a member of the Berkeley Institute for the Environment on campus, which brings together diverse programs and units focused on environmental research. Vulpe worked with Helen Poynton, UC Berkeley graduate student in nutritional sciences and toxicology and lead author of the study.

In an effort to test the viability of gene expression assays in environmental toxicity screening, the researchers exposed the water flea to copper, cadmium and zinc, three metal contaminants that are commonly found in the environment, particularly in parts of California because of the state's history of mining. The metals are also used in industrial parts ranging from brake pads to batteries, and can be found in urban runoff.

For the study, the researchers chose sublethal exposure levels that are comparable to what is found in the environment.

For each metal, the researchers found a decrease in the expression of alpha amylase genes, which are needed to break down starch and as a result interferes with digestion. They also found that exposure to copper decreased the activity of genes that encode glucan binding proteins and lectins, which are possibly involved in the water flea's ability to recognize an infection.

"It's possible that the decrease in expression of these genes is responsible for the immune system suppression seen in other copper-exposed organisms," said Poynton.

Signs of oxidative stress were discovered when the water flea was exposed to cadmium. The researchers saw an increase in activity of genes related to glutathione-S-transferase and peroxiredoxins, both of which protect cells from oxidative damage.

Exposure to zinc led to a significant decrease in chitinase gene activity, the researchers found. They noted that chitinase is needed to break up the exoskeleton of crustaceans during molting, an activity necessary for growth and reproduction. The researchers followed up with a chronic toxicity test and found that exposure to high levels of zinc decreases reproduction rates for the water flea.

"Our study is one of the first proof-of-concepts that aquatic toxicogenomics is possible," said Poynton. "The extra information we get from looking at gene expression could help us make more informed decisions about how harmful a toxicant is, and it could give regulators a new direction that we should be pursuing in monitoring water quality. For instance, we could find that it's necessary to regulate toxicant levels at lower levels, so we can act before toxicants get to the level of actually killing a population. There are sublethal effects of these metal contaminants suggested by our data."

Toxicogenomics could also be used for chemical screening, the researchers said. "For those in industry, chemicals could be screened for potentially ecological consequences while they are still in development," said Poynton. "In pursuing 10 different chemicals for one application, it may be discovered that one is particularly toxic, so it can be ditched right away. At the same time, if screening reveals that there is little or no impact on gene expression from a particular chemical, why not pursue that one for commercial development?"

However, the researchers are also careful to acknowledge the limitations of relying upon gene expression as the sole indicator of ecotoxicity. "It remains to be seen whether a particular gene expression actually leads to adverse outcomes for the organism," said Vulpe. "Does the gene expression lead to actual changes biologically? Also, some changes may be adaptive, helping an organism survive. Just because a gene is changing isn't bad."

Nevertheless, the results of this study suggest that genomics can play a significant role in assessing the toxicity of potential environmental contaminants, the researchers said.

"A 24-hour acute assay won't tell you that you're messing up the feeding mechanisms of the water flea, and chronic tests only look at reproduction," said Vulpe. "What you really want to know is whether there is something that will impact an organism's ability to survive well, including its ability to eat, escape predators or fight infection. That is what genomics could do."

Other co-authors of the study include researchers from the Children's Hospital Oakland Research Institute, the University of New Hampshire, Eon/Terragenomics, and the U.S. Army Corps of Engineers.

The U.S. Environmental Protection Agency, National Science Foundation, National Institutes of Health and the U.S. Army Engineer Research and Development Center provided support for this research.

Sarah Yang | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>