Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC-led Researchers Use Stem Cells to Regenerate Parts of Teeth

21.12.2006
A multi-national research team headed by USC School of Dentistry researcher Songtao Shi, DDS, PhD, has successfully regenerated tooth root and supporting periodontal ligaments to restore tooth function in a swine (an animal) model. The breakthrough holds significant promise for clinical application in human patients.

The study appears December 20 in the inaugural issue of PLoS ONE.

Utilizing stem cells harvested from the extracted wisdom teeth of 18- to 20-year olds, Shi and colleagues have created sufficient root and ligament structure to support a crown restoration in their mini-pig (animal) model. The resulting tooth restoration closely resembled the original tooth in function and strength.

The technique relies on stem cells harvested from the root apical papilla, which is responsible for the development of a tooth’s root and periodontal ligament. Previous studies conducted by Shi and collaborator Stan Gronthos at the National Institutes of Health had utilized dental pulp stem cells. Shi found the new technique to be superior.

"The apical papilla provides better stem cells for root structure regeneration. With this technique, the strength of the tooth restoration is not quite as strong as the original tooth, but we believe it is sufficient to withstand normal wear and tear," says Shi.

He hopes to move the technique to clinical trials within the next several years, a potential boon for dental patients who are not appropriate candidates for dental implant therapy or would prefer living tissue derived from their own teeth.

"Implant patients must have sufficient bone in the jaw to support the implant. For those who don’t, this therapy would be a great alternative," says Shi.

According to Shi, the not-so-distant future may be one in which not only wisdom teeth, but those baby teeth once left to the tooth fairy for a pittance, will become valuable therapeutic tools.

"We will be able to provide not only this t echnique, but other new therapies utilizing a patient's own stem cells harvested from their preserved teeth. This is a very exciting discovery and one that I hope to see in wide-spread clinical use in the near future," says Shi.

Jon Weiner | alfa
Further information:
http://www.usc.edu
http://www.usc.edu/hsc/info/pr/
http://dx.doi.org/10.1371/journal.pone.0000079

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>