Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


USC-led Researchers Use Stem Cells to Regenerate Parts of Teeth

A multi-national research team headed by USC School of Dentistry researcher Songtao Shi, DDS, PhD, has successfully regenerated tooth root and supporting periodontal ligaments to restore tooth function in a swine (an animal) model. The breakthrough holds significant promise for clinical application in human patients.

The study appears December 20 in the inaugural issue of PLoS ONE.

Utilizing stem cells harvested from the extracted wisdom teeth of 18- to 20-year olds, Shi and colleagues have created sufficient root and ligament structure to support a crown restoration in their mini-pig (animal) model. The resulting tooth restoration closely resembled the original tooth in function and strength.

The technique relies on stem cells harvested from the root apical papilla, which is responsible for the development of a tooth’s root and periodontal ligament. Previous studies conducted by Shi and collaborator Stan Gronthos at the National Institutes of Health had utilized dental pulp stem cells. Shi found the new technique to be superior.

"The apical papilla provides better stem cells for root structure regeneration. With this technique, the strength of the tooth restoration is not quite as strong as the original tooth, but we believe it is sufficient to withstand normal wear and tear," says Shi.

He hopes to move the technique to clinical trials within the next several years, a potential boon for dental patients who are not appropriate candidates for dental implant therapy or would prefer living tissue derived from their own teeth.

"Implant patients must have sufficient bone in the jaw to support the implant. For those who don’t, this therapy would be a great alternative," says Shi.

According to Shi, the not-so-distant future may be one in which not only wisdom teeth, but those baby teeth once left to the tooth fairy for a pittance, will become valuable therapeutic tools.

"We will be able to provide not only this t echnique, but other new therapies utilizing a patient's own stem cells harvested from their preserved teeth. This is a very exciting discovery and one that I hope to see in wide-spread clinical use in the near future," says Shi.

Jon Weiner | alfa
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>