Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Deal or no deal? Need for immediate reward linked to more active brain region

Individual preferences correspond to magnitude of activity and may indicate risk for addictions, gambling problems

Deal or No Deal" How people might play this popular game show – whether they would likely accept an offer for quick cash or opt to hold out for the chance to take home $1 million – probably has less to do with what could be inside each briefcase than what’s inside each contestant’s brain, suggests results of a new study.

University of Pittsburgh investigators didn’t study any of the game’s players nor did they offer stakes nearly as high, but their research in 45 normal adult volunteers, who were taunted with the prospect of getting between 10 cents and $105 at that very moment or waiting one week to five years for a sure $100, provides new insight about reward-based decision making and may have implications for understanding and treating addiction disorders.

Not only do people differ in their preferences for immediate over delayed rewards of larger value, say the researchers in the Journal of Neuroscience, but these individual traits are mirrored by the level of activity in the ventral striatum, a key part of the brain’s circuitry involved in mediating behavioral responses and physiological states associated with reward and pleasure. Research volunteers classified as more impulsive decision makers, who tend to seek rewards in the here and now, had significantly more activity in the ventral striatum.

The preference for immediate over delayed rewards of larger value, which researchers term “delay discounting,” has already been linked to impulse-control problems, such as substance abuse, addiction and pathological gambling. And separate studies have shown that people with addiction disorders have a more active ventral striatum. The current study is the first to look at the relationship between individual differences in discounting behavior and individual ventral striatum activity, which in finding a strong connection between brain and behavior in normal subjects suggests the same neurocognitive mechanism could contribute to increased risk for addiction as well.

“The ventral striatum appears to be a nexus where we balance acting impulsively to achieve instant gratification and making prudent choices that may delay rewards. Understanding what drives individual differences in ventral striatal sensitivity could aid efforts to treat people who have difficulty controlling impulsive behavior, by adjusting the circuitry,” explained lead author, Ahmad R. Hariri, Ph.D., assistant professor of psychiatry and director of the Developmental Imaging Genetics Program at the University of Pittsburgh School of Medicine and Western Psychiatric Institute and Clinic.

Based on their findings, Dr. Hariri and his colleagues are now looking at whether ventral striatum activity can help predict substance abuse disorders in those at risk. Since the activity of the ventral striatum is modulated by dopamine, a brain chemical also associated with reward, they plan to explore the role that variations in dopamine-related genes may play in determining differences in ventral striatum reactivity.

“Addiction and problem gambling represent behaviors on the extreme end of the continuum. But even in the most common, day-to-day situations, reward-based decisions dictate how we behave. For example, individual preferences for immediate versus delayed rewards could explain why some can’t resist the temptation of dessert, an immediate gratification, while others will opt for a five-mile run knowing it will help shed pounds, a delayed gratification,” added Dr. Hariri. “Food, sex and money are all sources of pleasure, yet individuals differ greatly in the rewarding aspects they derive from these pleasures.”

In the study, subjects completed a computer-based task of delay discounting that required choices between immediate and postponed rewards – a laboratory version of Deal or No Deal that gives investigators a reliable index of each volunteer’s impulsive tendencies. Subjects had to choose between hypothetical amounts of money available to them that day, ranging from 10 cents to $105, and $100 that would be given after seven days, one month, three months, six months, one year or five years. Based on their cumulative choices, a switch-point value was calculated for each volunteer – the specific dollar amount that caused indifference about receiving the money now or later.

After several months, fMRI brain imaging studies were performed to determine each subject’s ventral striatum activity during a task that measures positive and negative feedback in anticipation of a monetary reward. Each volunteer was told that the amount they would receive depended on how well they performed in a card guessing game, yet the researchers fixed the odds and all subjects were paid $10.

The researchers found that individual differences in discounting behavior, as determined by the first test, corresponded with the magnitude of ventral striatum activity. Positive feedback produced the greatest activity, especially in those with a preference for immediate rewards.

Lisa Rossi | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>