Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Developing our brightest minds

20.12.2006
- a report from the Study of Mathematically Precocious Youth after 35 years

Who will be the next Albert Einstein? The next Stephen Hawking? A new report from Vanderbilt University reveals the complex mix of factors that create these intellectual leaders: cognitive abilities, educational opportunities, investigative interests and old-fashioned hard work.

“The talent and commitment necessary to develop as a scientific leader require both personal attributes and learning environments that are truly beyond the norm,” study authors Camilla Benbow, Patricia and Rodes Hart Dean of Education and Human Development, and David Lubinski, professor of psychology, wrote. “Not surprisingly, the personal attributes of future science, mathematics, engineering and technology leaders reveal that it takes much more than exceptional abilities to truly develop exceptional scientific expertise.”

The report is based on 35 years of research from the Study of Mathematically Precocious Youth, a 50-year study that tracks individuals identified as exceptionally gifted at a young age across their lifespan. Begun at Johns Hopkins University in 1971, the study is now based at Vanderbilt University’s Peabody College of Education and Human Development and is led by Benbow and Lubinski. The current report reflects data collected from over 5,000 study participants. It was published online Dec. 18 by the journal Perspectives on Psychological Science.

The report has implications that reach far beyond the classroom, as the United States and other nations race to cultivate their brightest minds to compete in an information-based global economy.

“These findings come at a time when our nation is gathering its diverse resources to ensure that we are positioned to compete in a flat, technology-driven world,” Benbow said. “Supporting and cultivating our most intellectually gifted students is critical to maintaining our economic competitiveness globally. This research will help educators identify those students who have the most potential to become exceptional professionals and leaders in science, technology, engineering and mathematics.”

“We found that mathematical gifts and a variety of aptitudes have a significant impact, but that special educational opportunities and commitment can dramatically increase this impact,” Lubinski said. “These students are intellectually gifted, and those gifts are best fully realized when they have the full support and understanding of their teachers, their parents and their social network.”

Benbow and Lubinski found that while this group of students as a whole had exceptional mathematical ability it was far from homogenous, with a great diversity of talent and interests. These differences have a direct impact on participants’ future career choices and success, some of which were outside of traditional scientific and mathematic fields.

“Exceptional verbal ability is characteristic of participants whose favorite courses, college majors and occupations were in the social sciences and humanities, whereas higher levels of mathematical and spatial abilities characterize participants whose favorite courses, college majors and occupations were in engineering and math or computer science,” the authors wrote. “Given the ever-increasing importance of quantitative and scientific reasoning skills in modern cultures, when mathematically gifted individuals choose to pursue careers outside engineering and the physical sciences, it should be seen as a contribution to society, not a loss of talent.”

The researchers also found that differences in ability exist even among this elite group. The findings contradict a widely held belief in educational literature that there is an “ability ceiling;” in other words, that differences are moot among the very top students.

Lubinski and Benbow found this not to be the case. The study compared groups scoring progressively higher on the SAT – from the low to mid-500’s to above 700 – at age 12 or 13. By age 33, 50 percent of the top scorers had earned a doctorate, compared to 30 percent of the group scoring closer to 500. (Only one percent of the general American population earns a doctorate).

“Individual differences in the top 1 percent do make a difference,” the authors said. “More ability is always better, other things being equal.”

The study identified another, perhaps obvious, factor of these students’ success – a willingness to work extremely hard. A majority of the highest performers at age 33 indicated a willingness to work over 65 hours a week.

Laced throughout the report are differences revealed by the study between men and women. Though they found no differences in overall ability between the sexes, they did find marked differences in types of ability and interests. The report found female participants more likely to prefer organic subjects and careers, such as the social sciences, biology and medicine, and men more likely to prefer inorganic subjects and career paths, such as engineering and the physical sciences.

Benbow was appointed in May 2006 by President George W. Bush as vice chair of the National Mathematics Advisory Panel and was appointed by the president to the National Science Board in September 2006. She is an investigator in the Vanderbilt Kennedy Center for Research on Human Development.

Lubinski is professor of psychology and also a Vanderbilt Kennedy Center investigator. He was awarded the 2006 Distinguished Scholar Award by the National Association for Gifted Children in November 2006.

The research was supported by funds from the Templeton Foundation, the National Institute of Child Health and Human Development, the Vanderbilt Kennedy Center for Research on Human Development and the Strong Research Board.

Melanie Moran | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>