Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Home run' study on spread of disease published

20.12.2006
A paper that authors are calling a "home run" study on the spread of disease is published in this week’s issue of the Proceedings of the National Academy of Sciences (PNAS).

The study traces -- through genetic analysis -- the accidental introduction of invasive snails with parasitic flatworms. The invaders were probably transported with Japanese seed oysters imported into the waters of the Pacific Northwest over a century ago. It is the first comprehensive genetic analysis of an invasive marine host and its parasites. The study points to broad implications for identifying and mitigating spreading disease in a globalized economy.

Understanding the invasion pathways of disease-causing organisms and their hosts is key in limiting future disease outbreaks — in humans, in agriculture, and in wildlife.

Co-author Armand Kuris, professor of zoology in the Department of Ecology, Evolution and Marine Biology at the University of California, Santa Barbara, is one of a handful of experts who have been studying the ecology of parasites since the 1960s, an area of research that Kuris reports is understudied because parasites are so often invisible. He calls this PNAS paper a home run because it describes a complete picture of biological invasions. He explained that the imported snail has wiped out the native snails, changing the ecosystems of the Northwest.

"Little did the American oystermen of the early 1900s know that their activities could impact local fisheries one hundred years later," said Kuris. "Oyster aquaculture brought in many exotic species, including clams, worms, and snails. Importation was done in a crude and sloppy manner; there was little government regulation of these things at the time."

Invasive North American populations of Asian mud snails, Batillaria attramentaria, probably arrived with Pacific oysters, Crassostrea gigas, imported from northern Japan in the early 1900s, according to the scientists. Genetic research has now confirmed this. The team included first author Osamu Miura, a scientist with Tohoku University in Sendai, Japan; colleagues from the Smithsonian Tropical Research Institute in Panama (STRI); and, scientists from UC Santa Barbara.

"We saw a lot of genetic variation among snail populations in Japan but the North American snails are genetically most similar to those from northern Japan, the source of the imported oysters," Miura reports.

"Using genetics we have shown how the pest snail was introduced and that it came with a parasite that infects fishes and birds," said Mark Torchin, a biologist with STRI. Later, a second parasite came that was spread by migratory birds that ate the infected fish in Japan. The process shows that establishment of an invasive pest can lead to later establishment of disease organisms.

Ryan F. Hechinger, a doctoral student at UCSB, explained how the parasitic flatworm, or trematode, castrates the snail, replacing the gonads with its own mass. "The infected snail will never again make snail babies," said Hechinger. "It is now a parasite making machine. It’s basically a robot driven by the parasite."

Hechinger explained that this is the first time that scientists have examined an invasion of a host and a parasite. Migrating birds are bringing one of the trematode parasites; they ingest them when they eat infected fish. The host is a particular snail –- only one species is vulnerable –– and it is used as an intermediate host. The trematode moves on from the snail to burrow into fish. The trematode has permeated the ecosystem’s fish.

Of the eight species of trematode parasites that plague the snails in Japan, only the most common, Cercaria batillariae, has arrived in America. Gene sequencing showed that this single species actually consisted of several cryptic, or similar looking but genetically distinct, species in its home range in Japan. In North America, they commonly found two of the species. One parasite shows much less genetic diversity in America than in Japan, whereas the other parasite is equally diverse in both regions.

"Genetic evidence suggests that while one cryptic parasite species experienced a bottleneck and probably came with the snails, the other was probably historically dispersed by migratory birds and could only establish in North America after the snail hosts arrived," added Torchin. "This is because these trematode parasites have complex life cycles, using snails as first intermediate hosts, fishes as second intermediate hosts and birds as final hosts. As we homogenize biotas as a result of repeated species invasions through global trade, we increase the chances of reuniting infectious agents with suitable hosts."

Parasites which may have historically gone unnoticed as "tourists" in some regions may become pervasive residents after invasion of their missing hosts.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>