Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Why people 'never forget a face'

Are you one of those people who never forgets a face?

New research from Vanderbilt University suggests that we can remember more faces than other objects and that faces “stick” the best in our short-term memory. The reason may be that our expertise in remembering faces allows us to package them better for memory.

“Our results show that we can store more faces than other objects in our visual short-term memory,” Gauthier, associate professor of psychology and the study’s co-author, says. “We believe this happens because of the special way in which faces are encoded.”

Kim Curby, the study’s primary author and a post-doctoral researcher at Yale University, likens such encoding to packing a suitcase. “How much you can fit in a bag depends on how well you pack it,” she says. “In the same way, our expertise in ‘packaging’ faces means that we can remember more of them.”

The findings, part of Curby’s dissertation at Vanderbilt, are currently in press at the journal Psychonomic Bulletin and Review.

Curby and Gauthier’s research has practical implications for the way we use visual short-term memory or VSTM. “Being able to store more faces in VSTM may be very useful in complex social situations,” Gauthier says.

“This opens up the possibility of training people to develop similarly superior VSTM for other categories of objects,” Curby adds.

Short-term memory is crucial to our impression of a continuous world, serving as temporary storage for information that we are currently using. For example, in order to understand this sentence, your short-term memory will remember the words in the beginning while you read through to the end. VSTM is a component of short-term memory that helps us process and briefly remember images and objects, rather than words and sounds.

VSTM allows us to remember objects for a few seconds, but its capacity is limited. Curby’s and Gauthier’s new research focuses on whether we can store more faces than other objects in VSTM, and the possible mechanisms underlying this advantage.

Participants studied up to five faces on a screen for varying lengths of time (up to four seconds). A single face was later presented and participants decided if this was a face that was part of the original display. For a comparison, the process was repeated with other objects, like watches or cars.

Curby and Gauthier found that when participants studied the displays for only a brief amount of time (half a second), they could store fewer faces than objects in VSTM. They believe this is because faces are more complex than watches or cars and require more time to be encoded. Surprisingly, when participants were given more time to encode the images (four seconds), an advantage for faces over objects emerged.

The researchers believe that our experience with faces explains this advantage. This theory is supported by the fact that the advantage was only obtained for faces encoded in the upright orientation, with which we are most familiar. Faces that were encoded upside-down showed no advantage over other objects.

“Our work is the first to show an advantage in capacity for faces over other objects,” Gauthier explained. “Our results suggest that because experience leads you to encode upright faces in a different manner (not only using the parts, but using the whole configuration) you can store more faces in VSTM.”

“What’s striking about this is that some of the most prominent, current theories suggest that the capacity of VSTM is set in stone, unalterable by experience,” Curby said. “However, our results clearly show that expert learning impacts VSTM capacity.”

Curby and Gauthier plan to continue their research on VSTM processes. Their next step will focus on comparing VSTM capacity in people who are experts for other categories of complex objects, such as cars. Later, they will utilize brain imaging to pinpoint the mechanisms in the brain by which faces are encoded more efficiently than other objects.

Gauthier is a member of the Vanderbilt Vision Research Center, the Center for Integrative and Cognitive Neuroscience and the Vanderbilt Kennedy Center for Research on Human Development.

This research was supported by funding from the National Institutes of Health, the National Science Foundation and the James S. McDonnell Foundation.

Melanie Moran | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>