Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why people 'never forget a face'

13.12.2006
Are you one of those people who never forgets a face?

New research from Vanderbilt University suggests that we can remember more faces than other objects and that faces “stick” the best in our short-term memory. The reason may be that our expertise in remembering faces allows us to package them better for memory.

“Our results show that we can store more faces than other objects in our visual short-term memory,” Gauthier, associate professor of psychology and the study’s co-author, says. “We believe this happens because of the special way in which faces are encoded.”

Kim Curby, the study’s primary author and a post-doctoral researcher at Yale University, likens such encoding to packing a suitcase. “How much you can fit in a bag depends on how well you pack it,” she says. “In the same way, our expertise in ‘packaging’ faces means that we can remember more of them.”

The findings, part of Curby’s dissertation at Vanderbilt, are currently in press at the journal Psychonomic Bulletin and Review.

Curby and Gauthier’s research has practical implications for the way we use visual short-term memory or VSTM. “Being able to store more faces in VSTM may be very useful in complex social situations,” Gauthier says.

“This opens up the possibility of training people to develop similarly superior VSTM for other categories of objects,” Curby adds.

Short-term memory is crucial to our impression of a continuous world, serving as temporary storage for information that we are currently using. For example, in order to understand this sentence, your short-term memory will remember the words in the beginning while you read through to the end. VSTM is a component of short-term memory that helps us process and briefly remember images and objects, rather than words and sounds.

VSTM allows us to remember objects for a few seconds, but its capacity is limited. Curby’s and Gauthier’s new research focuses on whether we can store more faces than other objects in VSTM, and the possible mechanisms underlying this advantage.

Participants studied up to five faces on a screen for varying lengths of time (up to four seconds). A single face was later presented and participants decided if this was a face that was part of the original display. For a comparison, the process was repeated with other objects, like watches or cars.

Curby and Gauthier found that when participants studied the displays for only a brief amount of time (half a second), they could store fewer faces than objects in VSTM. They believe this is because faces are more complex than watches or cars and require more time to be encoded. Surprisingly, when participants were given more time to encode the images (four seconds), an advantage for faces over objects emerged.

The researchers believe that our experience with faces explains this advantage. This theory is supported by the fact that the advantage was only obtained for faces encoded in the upright orientation, with which we are most familiar. Faces that were encoded upside-down showed no advantage over other objects.

“Our work is the first to show an advantage in capacity for faces over other objects,” Gauthier explained. “Our results suggest that because experience leads you to encode upright faces in a different manner (not only using the parts, but using the whole configuration) you can store more faces in VSTM.”

“What’s striking about this is that some of the most prominent, current theories suggest that the capacity of VSTM is set in stone, unalterable by experience,” Curby said. “However, our results clearly show that expert learning impacts VSTM capacity.”

Curby and Gauthier plan to continue their research on VSTM processes. Their next step will focus on comparing VSTM capacity in people who are experts for other categories of complex objects, such as cars. Later, they will utilize brain imaging to pinpoint the mechanisms in the brain by which faces are encoded more efficiently than other objects.

Gauthier is a member of the Vanderbilt Vision Research Center, the Center for Integrative and Cognitive Neuroscience and the Vanderbilt Kennedy Center for Research on Human Development.

This research was supported by funding from the National Institutes of Health, the National Science Foundation and the James S. McDonnell Foundation.

Melanie Moran | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>