Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why people 'never forget a face'

13.12.2006
Are you one of those people who never forgets a face?

New research from Vanderbilt University suggests that we can remember more faces than other objects and that faces “stick” the best in our short-term memory. The reason may be that our expertise in remembering faces allows us to package them better for memory.

“Our results show that we can store more faces than other objects in our visual short-term memory,” Gauthier, associate professor of psychology and the study’s co-author, says. “We believe this happens because of the special way in which faces are encoded.”

Kim Curby, the study’s primary author and a post-doctoral researcher at Yale University, likens such encoding to packing a suitcase. “How much you can fit in a bag depends on how well you pack it,” she says. “In the same way, our expertise in ‘packaging’ faces means that we can remember more of them.”

The findings, part of Curby’s dissertation at Vanderbilt, are currently in press at the journal Psychonomic Bulletin and Review.

Curby and Gauthier’s research has practical implications for the way we use visual short-term memory or VSTM. “Being able to store more faces in VSTM may be very useful in complex social situations,” Gauthier says.

“This opens up the possibility of training people to develop similarly superior VSTM for other categories of objects,” Curby adds.

Short-term memory is crucial to our impression of a continuous world, serving as temporary storage for information that we are currently using. For example, in order to understand this sentence, your short-term memory will remember the words in the beginning while you read through to the end. VSTM is a component of short-term memory that helps us process and briefly remember images and objects, rather than words and sounds.

VSTM allows us to remember objects for a few seconds, but its capacity is limited. Curby’s and Gauthier’s new research focuses on whether we can store more faces than other objects in VSTM, and the possible mechanisms underlying this advantage.

Participants studied up to five faces on a screen for varying lengths of time (up to four seconds). A single face was later presented and participants decided if this was a face that was part of the original display. For a comparison, the process was repeated with other objects, like watches or cars.

Curby and Gauthier found that when participants studied the displays for only a brief amount of time (half a second), they could store fewer faces than objects in VSTM. They believe this is because faces are more complex than watches or cars and require more time to be encoded. Surprisingly, when participants were given more time to encode the images (four seconds), an advantage for faces over objects emerged.

The researchers believe that our experience with faces explains this advantage. This theory is supported by the fact that the advantage was only obtained for faces encoded in the upright orientation, with which we are most familiar. Faces that were encoded upside-down showed no advantage over other objects.

“Our work is the first to show an advantage in capacity for faces over other objects,” Gauthier explained. “Our results suggest that because experience leads you to encode upright faces in a different manner (not only using the parts, but using the whole configuration) you can store more faces in VSTM.”

“What’s striking about this is that some of the most prominent, current theories suggest that the capacity of VSTM is set in stone, unalterable by experience,” Curby said. “However, our results clearly show that expert learning impacts VSTM capacity.”

Curby and Gauthier plan to continue their research on VSTM processes. Their next step will focus on comparing VSTM capacity in people who are experts for other categories of complex objects, such as cars. Later, they will utilize brain imaging to pinpoint the mechanisms in the brain by which faces are encoded more efficiently than other objects.

Gauthier is a member of the Vanderbilt Vision Research Center, the Center for Integrative and Cognitive Neuroscience and the Vanderbilt Kennedy Center for Research on Human Development.

This research was supported by funding from the National Institutes of Health, the National Science Foundation and the James S. McDonnell Foundation.

Melanie Moran | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

Two-dimensional melting of hard spheres experimentally unravelled after 60 years

24.04.2017 | Life Sciences

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>