Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of gene transfer for erectile dysfunction shows promise

01.12.2006
The first human study using gene transfer to treat erectile dysfunction (ED) shows promising results and suggests the potential for using the technology to treat overactive bladder, irritable bowel syndrome and asthma, according to the researchers.

"In the small pilot study, this new therapy was well tolerated and safe," said George Christ, Ph.D., senior researcher and a professor at the Institute for Regenerative Medicine at Wake Forest University School of Medicine. "It provides evidence that gene transfer is a viable approach to treating ED and other diseases involving smooth muscle cells."

The results of the study, which included 11 men with ED, are reported online today in Human Gene Therapy. The technology was developed by Christ and Arnold Melman, M.D., when they worked together at Albert Einstein College of Medicine in the Bronx, New York.

Unlike traditional gene therapy, the gene transfer approach being pioneered by Christ and Melman does not change the DNA or genetic code of cells. Instead, small pieces of DNA reach the nuclei of cells and this causes them to increase production of particular proteins. These proteins help relax smooth muscle cells, the type of muscle found in the penis as well as in hollow organs such as the bladder. Relaxing the tissue allows the penis to fill with blood and become erect.

Previous research has shown that more than 50 percent of men between 40 and 70 years old and 70 percent over age 70 may have ED. The new therapy is a potential alternative to oral medications, such as Viagra, which are not effective for an estimated 30 to 40 percent of men with ED.

A possible advantage of gene transfer is that a single treatment could last for months. In the current study, improvements were maintained through the 24 weeks of study.

The study was conducted from May 2004 to May 2006 at Mount Sinai School of Medicine and New York University School of Medicine. Men ranged from 42 to 80 years old with a mean age of 59. Six subjects were white, four were black and one was Hispanic. In half of the subjects, the cause of ED was diabetes or cardiovascular disease – both of which can interfere with the ability of smooth muscle cells to relax.

The primary goal of the study was to determine the safety and tolerability of the new therapy. However, the results also showed that at the highest doses, men reported highly significant improvements in erectile function.

The DNA segments – mixed into plasma – were injected into the corpus cavernosum, expandable tissue along the length of the penis that fills with blood during erection. A variety of clinical and laboratory tests were used to assess safety. In addition, effectiveness was measured using the International Index of Erectile Function scale, a questionnaire that is commonly used to measure ED. Patient responses were validated by their partners.

Researchers identified no safety issues with the treatment. Participants who received the highest two doses had apparent sustained improvements in ED as measured by the questionnaire. The researchers said that a larger study that includes a "control" group treated with a placebo is needed to confirm the safety and effectiveness of the treatment.

Other researchers on the project were Melman, Natan Bar-Chama, M.D., with Mount Sinai School of Medicine, Andrew McCullough, M.D., with New York University School of Medicine, and Kelvin Davies, Ph.D., with Albert Einstein College of Medicine.

The technology is being developed by Ion Channel Innovations (ICI), a development stage biotechnology company, in which Christ and Melman are co-founders and directing members. The therapy is known as ion channel therapy because the proteins it targets are potassium channels, "gates" within cells critical for contraction and relaxation of smooth muscle.

At the Wake Forest Institute for Regenerative Medicine, Christ is continuing to pursue the therapy in collaboration with ICI, and is also exploring the potential of combining gene transfer with traditional oral medications to further increase the clinical utility of the technology. The Albert Einstein College of Medicine at Yeshiva University owns the ICT patents and has granted the company exclusive, worldwide rights.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>