Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Violent video games leave teenagers emotionally aroused

30.11.2006
A new study has found that adolescents who play violent video games may exhibit lingering effects on brain function, including increased activity in the region of the brain that governs emotional arousal and decreased activity in the brain’s executive function, which is associated with control, focus and concentration. The findings were presented today at the annual meeting of the Radiological Society of North America (RSNA).

"Our study suggests that playing a certain type of violent video game may have different short-term effects on brain function than playing a nonviolent—but exciting—game," said Vincent P. Mathews, M.D., professor of radiology at Indiana University School of Medicine in Indianapolis.

Video games are big business with nearly $10 billion in sales in the United States last year. But along with growing sales come growing concerns about what effects these games may be having on the young people who play them.

Dr. Mathews and colleagues randomly assigned 44 adolescents to play either a violent video game or a nonviolent video game for 30 minutes. The researchers then used functional magnetic resonance imaging (fMRI) to study brain function during a series of tasks measuring inhibition and concentration. One test used emotional stimuli and one did not.

fMRI measures the tiny metabolic changes that occur when a part of the brain is active. These changes will appear as a brightly colored area on the MR image, indicating the part of the brain that is being used to process the task. The two groups did not differ in accuracy or reaction time for the tasks, but analysis of the fMRI data showed differences in brain activation.

Compared with the group that played the nonviolent game, the group that played the violent video game demonstrated less activation in the prefrontal portions of the brain, which are involved in inhibition, concentration and self-control, and more activation in the amygdala, which is involved in emotional arousal.

"During tasks requiring concentration and processing of emotional stimuli, the adolescents who had played the violent video game showed distinct differences in brain activation than the adolescents who played an equally exciting and fun—but nonviolent—game," Dr. Mathews said. "Because of random assignment, the most likely factor accounting for these differences would be the group to which the volunteers were assigned."

The researchers hope to conduct additional research on long-term effects of violent video game exposure and the impact of these brain functioning differences.

"Additional investigation of the reasons for and effects of this difference in brain functioning will be important targets for future study, but the current study showed that a difference between the groups does exist," Dr. Mathews said.

Maureen Morley | EurekAlert!
Further information:
http://www.rsna.org

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>