Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radiologists attempt to solve mystery of Tut's demise

29.11.2006
Egyptian radiologists who performed the first-ever computed tomography (CT) evaluation of King Tutankhamun’s mummy believe they have solved the mystery of how the ancient pharaoh died. The CT images and results of their study were presented today at the annual meeting of the Radiological Society of North America (RSNA).

Ashraf Selim, M.D., radiologist at Kasr Eleini Teaching Hospital, Cairo University in Egypt, was part of an international team of scientists that studied the 3,300-year-old mummy of King Tut in Egypt. Using a mobile multi-detector CT scanner, the researchers performed a full-body scan on the king's remains, obtaining approximately 1,900 digital cross-sectional images.

"We found the mummy was in a critical stage of preservation," said Dr. Selim. "The body was cut into several parts with some missing pieces."

With the help of the CT images, researchers estimated King Tut's age at death to be between 18 and 20 years. His height was 180 centimeters or approximately 5 feet 11 inches. The researchers discovered a possible premortem fracture to the femoral (thigh) bone. While they cannot assess how the injury occurred, the findings suggest that the injury may have been an open wound that became infected and ultimately fatal.

Since King Tut was first examined by x-ray in 1968, revealing what appeared to be a bone fragment in his skull, it has been widely speculated that a blow to the head killed the boy king. However, Dr. Selim and colleagues found several pieces of evidence to the contrary. In the cranial cavity, they found loose bone fragments that were not covered with the intracranial solidified embalming material. These bone fragments matched exactly a defect within the first vertebra in the neck. They found no evidence of skull fractures.

A mishap during the mummification process, or even damage incurred during that first x-ray examination may explain the misplaced—and misleading—bone fragments. Dr. Selim suggests the damage may have been caused by the expedition led by Howard Carter that first discovered Tut's tomb in 1922.

"We believe that this broken piece from the first vertebra of the king's spine may have been fractured and dislodged when Carter, Derry, Hamdy and their team tried to remove and free the gold mask, which was tightly glued and quite adherent to the body, by using some metal instruments that broke the thin, fragile piece of bone that lies immediately underneath the bone defect in the skull base through which the spinal cord emerges," Dr. Selim said.

Dr. Selim's team did not escape the so-called curse that is said to plague anyone who disrupts the remains of the boy king.

"While performing the CT scan of King Tut, we had several strange occurrences," he said. "The electricity suddenly went out, the CT scanner could not be started and a team member became ill. If we weren't scientists, we might have become believers in the Curse of the Pharaohs."

The CT examination of King Tut is part of a five-year initiative called the Egyptian Mummy Project to image and preserve Egypt’s mummies and to solve various mysteries about the diseases and lifestyles of ancient Egyptians.

King Tutankhamun, who ascended to the throne when he was just eight years old, was mummified and buried with other ancient royals. His tomb, filled with 5,000 artifacts, was discovered near Luxor, Egypt in 1922. Artifacts from the tombs of King Tut and other royals buried in the Valley of the Kings are part of "Tutankhamun and the Golden Age of the Pharaohs," an exhibition currently at Chicago's Field Museum.

Maureen Morley | EurekAlert!
Further information:
http://www.rsna.org

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>