Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radiologists attempt to solve mystery of Tut's demise

29.11.2006
Egyptian radiologists who performed the first-ever computed tomography (CT) evaluation of King Tutankhamun’s mummy believe they have solved the mystery of how the ancient pharaoh died. The CT images and results of their study were presented today at the annual meeting of the Radiological Society of North America (RSNA).

Ashraf Selim, M.D., radiologist at Kasr Eleini Teaching Hospital, Cairo University in Egypt, was part of an international team of scientists that studied the 3,300-year-old mummy of King Tut in Egypt. Using a mobile multi-detector CT scanner, the researchers performed a full-body scan on the king's remains, obtaining approximately 1,900 digital cross-sectional images.

"We found the mummy was in a critical stage of preservation," said Dr. Selim. "The body was cut into several parts with some missing pieces."

With the help of the CT images, researchers estimated King Tut's age at death to be between 18 and 20 years. His height was 180 centimeters or approximately 5 feet 11 inches. The researchers discovered a possible premortem fracture to the femoral (thigh) bone. While they cannot assess how the injury occurred, the findings suggest that the injury may have been an open wound that became infected and ultimately fatal.

Since King Tut was first examined by x-ray in 1968, revealing what appeared to be a bone fragment in his skull, it has been widely speculated that a blow to the head killed the boy king. However, Dr. Selim and colleagues found several pieces of evidence to the contrary. In the cranial cavity, they found loose bone fragments that were not covered with the intracranial solidified embalming material. These bone fragments matched exactly a defect within the first vertebra in the neck. They found no evidence of skull fractures.

A mishap during the mummification process, or even damage incurred during that first x-ray examination may explain the misplaced—and misleading—bone fragments. Dr. Selim suggests the damage may have been caused by the expedition led by Howard Carter that first discovered Tut's tomb in 1922.

"We believe that this broken piece from the first vertebra of the king's spine may have been fractured and dislodged when Carter, Derry, Hamdy and their team tried to remove and free the gold mask, which was tightly glued and quite adherent to the body, by using some metal instruments that broke the thin, fragile piece of bone that lies immediately underneath the bone defect in the skull base through which the spinal cord emerges," Dr. Selim said.

Dr. Selim's team did not escape the so-called curse that is said to plague anyone who disrupts the remains of the boy king.

"While performing the CT scan of King Tut, we had several strange occurrences," he said. "The electricity suddenly went out, the CT scanner could not be started and a team member became ill. If we weren't scientists, we might have become believers in the Curse of the Pharaohs."

The CT examination of King Tut is part of a five-year initiative called the Egyptian Mummy Project to image and preserve Egypt’s mummies and to solve various mysteries about the diseases and lifestyles of ancient Egyptians.

King Tutankhamun, who ascended to the throne when he was just eight years old, was mummified and buried with other ancient royals. His tomb, filled with 5,000 artifacts, was discovered near Luxor, Egypt in 1922. Artifacts from the tombs of King Tut and other royals buried in the Valley of the Kings are part of "Tutankhamun and the Golden Age of the Pharaohs," an exhibition currently at Chicago's Field Museum.

Maureen Morley | EurekAlert!
Further information:
http://www.rsna.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>