Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chemo combo fights cancer

Bacteria that can cause deadly infections in humans and animals have shown promise in treating cancer by “eating” tumors from the inside out. Now, two new studies at the Johns Hopkins Kimmel Cancer Center have demonstrated that, combined with specially-packaged anti-cancer drugs, the bacterial therapy’s prospects for cancer eradication have dramatically improved.

In mouse experiments reported in the November 24 issue of Science, the Hopkins researchers demonstrated that genetically-modified bacteria called Clostridium novyi-NT (C.novy-NT) have a special taste for oxygen-starved environments much like those found in the core of cancer cell clusters. The modified bacteria themselves are relatively harmless, but their unmodified counterparts produce poisons that have killed some humans and cattle when introduced into the bloodstream.

“It is not difficult to kill cancer cells. The challenge is killing them while sparing normal cells,” says Bert Vogelstein, M.D., professor and co-director of the Ludwig Center and Howard Hughes Medical Institute at the Johns Hopkins Kimmel Cancer Center.

The bacteria’s cancer-killing effects were first discovered five years ago by the Hopkins team who noticed the germ’s ability to grow and spread in the oxygen-poor core of mouse tumors and the blackened scars signaling that most of the cancer cells had been destroyed. Normal surrounding cells were largely unaffected. But the bacteria failed to kill cancer cells at the still oxygen-rich edge of the tumors.

In response, the Hopkins team added specially-packaged chemotherapy to the bacterial attack speculating that certain properties of the bacteria would improve the drug’s effectiveness, according to Shibin Zhou, M.D., Ph.D., assistant professor of oncology at the Johns Hopkins Kimmel Cancer Center.

The combo approach temporarily wiped out both large and small tumors in almost 100 mice and permanently cured more than two-thirds of them.

The likely explanation for the greater cancer cell kill by the combination treatment is that the bacteria expose the tumors to six times the amount of chemotherapy than is usually the case by improving the breakdown and dispersal of the chemotherapy’s fatty package at the tumor site.

The investigators repeated experiments using two packaged chemotherapy drugs -- doxorubicin and irinotecan -- and observed similar tumor-killing effects of both when used in combination with the bacteria.

“Packaged” cancer drugs currently are available in microscopic fatty capsules called liposomes which gravitate to tumors because they are too large to fit through the skins of tightly-woven blood vessels surrounding normal tissue and small enough to get through tumor vasculature.

Combining C.novyi-NT and liposomes filled with chemotherapy seems to have its synergistic effect on tumors owing to the presence of an enzyme found lurking in C. novyi-NT cultures, which Ian Cheong, Ph.D., in the Vogelstein lab dubbed liposomase. It destroys fatty membranes and may disrupt the outer layer of liposomes releasing their drug contents.

“Drugs contained in these ‘Trojan horse’ compartments are specifically released at the tumor site by the C-novyi-NT bacteria which may improve the effectiveness and safety of the therapy,” says Cheong who is the lead author of the study.

The scientists note that liposomase could be used in a variety of other targeted therapies besides the bacteria combination. Such approaches could include attaching liposomase to antibodies that have an affinity for specific tumors or adding its DNA code to gene therapy. As many drugs can be packaged within liposomes, the investigators say the approach could have general utility.

In a companion study published in the November 19 online issue of Nature Biotechnology, the Hopkins team decoded the entire C.novyi-NT genome which Zhou says “was instrumental in identifying liposomase and will help improve our bacterial-based therapies.”

Preliminary safety tests of injected C. novyi-NT alone are under way in a small number of cancer patients.

Vanessa Wasta | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>