Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemo combo fights cancer

28.11.2006
Bacteria that can cause deadly infections in humans and animals have shown promise in treating cancer by “eating” tumors from the inside out. Now, two new studies at the Johns Hopkins Kimmel Cancer Center have demonstrated that, combined with specially-packaged anti-cancer drugs, the bacterial therapy’s prospects for cancer eradication have dramatically improved.

In mouse experiments reported in the November 24 issue of Science, the Hopkins researchers demonstrated that genetically-modified bacteria called Clostridium novyi-NT (C.novy-NT) have a special taste for oxygen-starved environments much like those found in the core of cancer cell clusters. The modified bacteria themselves are relatively harmless, but their unmodified counterparts produce poisons that have killed some humans and cattle when introduced into the bloodstream.

“It is not difficult to kill cancer cells. The challenge is killing them while sparing normal cells,” says Bert Vogelstein, M.D., professor and co-director of the Ludwig Center and Howard Hughes Medical Institute at the Johns Hopkins Kimmel Cancer Center.

The bacteria’s cancer-killing effects were first discovered five years ago by the Hopkins team who noticed the germ’s ability to grow and spread in the oxygen-poor core of mouse tumors and the blackened scars signaling that most of the cancer cells had been destroyed. Normal surrounding cells were largely unaffected. But the bacteria failed to kill cancer cells at the still oxygen-rich edge of the tumors.

In response, the Hopkins team added specially-packaged chemotherapy to the bacterial attack speculating that certain properties of the bacteria would improve the drug’s effectiveness, according to Shibin Zhou, M.D., Ph.D., assistant professor of oncology at the Johns Hopkins Kimmel Cancer Center.

The combo approach temporarily wiped out both large and small tumors in almost 100 mice and permanently cured more than two-thirds of them.

The likely explanation for the greater cancer cell kill by the combination treatment is that the bacteria expose the tumors to six times the amount of chemotherapy than is usually the case by improving the breakdown and dispersal of the chemotherapy’s fatty package at the tumor site.

The investigators repeated experiments using two packaged chemotherapy drugs -- doxorubicin and irinotecan -- and observed similar tumor-killing effects of both when used in combination with the bacteria.

“Packaged” cancer drugs currently are available in microscopic fatty capsules called liposomes which gravitate to tumors because they are too large to fit through the skins of tightly-woven blood vessels surrounding normal tissue and small enough to get through tumor vasculature.

Combining C.novyi-NT and liposomes filled with chemotherapy seems to have its synergistic effect on tumors owing to the presence of an enzyme found lurking in C. novyi-NT cultures, which Ian Cheong, Ph.D., in the Vogelstein lab dubbed liposomase. It destroys fatty membranes and may disrupt the outer layer of liposomes releasing their drug contents.

“Drugs contained in these ‘Trojan horse’ compartments are specifically released at the tumor site by the C-novyi-NT bacteria which may improve the effectiveness and safety of the therapy,” says Cheong who is the lead author of the study.

The scientists note that liposomase could be used in a variety of other targeted therapies besides the bacteria combination. Such approaches could include attaching liposomase to antibodies that have an affinity for specific tumors or adding its DNA code to gene therapy. As many drugs can be packaged within liposomes, the investigators say the approach could have general utility.

In a companion study published in the November 19 online issue of Nature Biotechnology, the Hopkins team decoded the entire C.novyi-NT genome which Zhou says “was instrumental in identifying liposomase and will help improve our bacterial-based therapies.”

Preliminary safety tests of injected C. novyi-NT alone are under way in a small number of cancer patients.

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.hopkinskimmelcancercenter.org

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>