Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study finds on/off switch for septic shock

16.11.2006
According to a new study, septic shock--a dangerous, often deadly runaway immune response--is controlled by a genetic on/off switch. The research also suggests how a drug might temper sepsis. This is the first time this genetic mechanism has been revealed in an experimental animal.

The study by Robert Schneider, Ph.D., the Albert B. Sabin Professor of Microbiology and Molecular Pathogenesis at NYU School of Medicine and his colleagues, is being published in the November 15th print edition of the journal Genes & Development

A killer and a protector

Septic shock is the nation's 10th most frequent cause of death and the leading cause of hospital-related mortality. Bacterial infection, notably the toxins that are part of the bacterial cell wall, stimulate the inflammatory response which can spin out of control. Sepsis progresses swiftly from chills, fever and shallow breathing, to dilated and leaky blood vessels, a lack of blood supply in the body's organs, multiple organ failure and, often, death.

Infection causes the body's immune system to produce protective proteins called cytokines. Problems arise when the body is unable to turn off cytokine production and they overwhelm the body, says Dr. Schneider. "The resulting cytokine storm is, for example, what kills people when they are infected with anthrax and, we think, an important factor in what killed people in the flu pandemic of 1918," he says.

Dr. Schneider and his colleagues focused on one of the key genes that regulate cytokine production called auf1, which has been extensively studied in tissue culture but not in animals. In an attempt to move the research closer to the clinical setting, the team genetically engineered and bred mice lacking the auf1 gene, a so-called knock-out mouse. Then, mice with the gene and mice without it were exposed to a bacterial toxin that causes mild food poisoning. The normal mice had little problem fending off the endotoxin. "The mice without the gene died due to an uncontrolled septic-shock like response--their blood vessels burst, their spleens were destroyed," says Dr. Schneider. Mortality was five-fold higher in mice without the auf1 gene.

Further research showed where auf1 functions at the molecular level, he says. In normal mice, the scientists found that auf1 steps into action once the immune response is activated and after cytokine production gets underway. The action is pronounced: messenger RNAs (mRNAs) which are blueprints for very specific cytokines--namely interleukin-1 beta, tumor necrosis factor alpha and COX-2--are degraded. That process of degrading the mRNAs shuts off production of these cytokines.

In the study, mice lacking the auf1 gene do not seem to have that off switch; their cytokine levels were greatly elevated. A cytokine storm had caused sepsis in these animals.

In summary, auf1 is a protector that can stop an infection from progressing to septic shock, explains Dr. Schneider. It does so by helping with cytokine production and then tempering the production of these proteins. Auf1 acts like a cytokine on/off switch.

The future possibilities

Dr. Schneider believes auf1 makes an excellent target for the development of therapeutics. For example, a drug could turn on auf1 or stabilize its activity as a way to specifically tone down production of those cytokines that are the major players in sepsis, he says. His study results might also help explain why many previous sepsis drug trials have failed. The cytokine storm needs to be turned off at its source, he says, and auf1 offers the on/off switch to do just that.

Jennifer Choi | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>