Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study finds on/off switch for septic shock

16.11.2006
According to a new study, septic shock--a dangerous, often deadly runaway immune response--is controlled by a genetic on/off switch. The research also suggests how a drug might temper sepsis. This is the first time this genetic mechanism has been revealed in an experimental animal.

The study by Robert Schneider, Ph.D., the Albert B. Sabin Professor of Microbiology and Molecular Pathogenesis at NYU School of Medicine and his colleagues, is being published in the November 15th print edition of the journal Genes & Development

A killer and a protector

Septic shock is the nation's 10th most frequent cause of death and the leading cause of hospital-related mortality. Bacterial infection, notably the toxins that are part of the bacterial cell wall, stimulate the inflammatory response which can spin out of control. Sepsis progresses swiftly from chills, fever and shallow breathing, to dilated and leaky blood vessels, a lack of blood supply in the body's organs, multiple organ failure and, often, death.

Infection causes the body's immune system to produce protective proteins called cytokines. Problems arise when the body is unable to turn off cytokine production and they overwhelm the body, says Dr. Schneider. "The resulting cytokine storm is, for example, what kills people when they are infected with anthrax and, we think, an important factor in what killed people in the flu pandemic of 1918," he says.

Dr. Schneider and his colleagues focused on one of the key genes that regulate cytokine production called auf1, which has been extensively studied in tissue culture but not in animals. In an attempt to move the research closer to the clinical setting, the team genetically engineered and bred mice lacking the auf1 gene, a so-called knock-out mouse. Then, mice with the gene and mice without it were exposed to a bacterial toxin that causes mild food poisoning. The normal mice had little problem fending off the endotoxin. "The mice without the gene died due to an uncontrolled septic-shock like response--their blood vessels burst, their spleens were destroyed," says Dr. Schneider. Mortality was five-fold higher in mice without the auf1 gene.

Further research showed where auf1 functions at the molecular level, he says. In normal mice, the scientists found that auf1 steps into action once the immune response is activated and after cytokine production gets underway. The action is pronounced: messenger RNAs (mRNAs) which are blueprints for very specific cytokines--namely interleukin-1 beta, tumor necrosis factor alpha and COX-2--are degraded. That process of degrading the mRNAs shuts off production of these cytokines.

In the study, mice lacking the auf1 gene do not seem to have that off switch; their cytokine levels were greatly elevated. A cytokine storm had caused sepsis in these animals.

In summary, auf1 is a protector that can stop an infection from progressing to septic shock, explains Dr. Schneider. It does so by helping with cytokine production and then tempering the production of these proteins. Auf1 acts like a cytokine on/off switch.

The future possibilities

Dr. Schneider believes auf1 makes an excellent target for the development of therapeutics. For example, a drug could turn on auf1 or stabilize its activity as a way to specifically tone down production of those cytokines that are the major players in sepsis, he says. His study results might also help explain why many previous sepsis drug trials have failed. The cytokine storm needs to be turned off at its source, he says, and auf1 offers the on/off switch to do just that.

Jennifer Choi | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>