Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic study observes normal aging process lowers breast cancer risk

16.11.2006
Normal aging of breast tissue lessens breast cancer risk, reports a new study by Mayo Clinic Cancer Center researchers published in the Nov. 15 issue of the Journal of the National Cancer Institute.

As most women get older, and especially after menopause, the milk-producing glands (lobules) shut down -- a process known as lobular regression, or involution. Since breast cancer is thought to originate in the lobules, their reduced size and number decreases the chance of cancer formation. Women who experience complete involution have half the risk of developing breast cancer of those who do not.

"The risk of breast cancer increases among women who have no breast involution as they age," says Lynn Hartmann, M.D., Mayo Clinic oncologist and lead investigator of the study. "This study identifies specific groups of women who are at lower or higher risks of breast cancer due to their extent of involution and factors such as age, family cancer history, reproductive history and types of benign breast disease."

Breast cancer is a significant threat to women. The American Cancer Society reports that more than 250,000 women will be diagnosed in the United States this year with breast cancer, and at least 40,000 will die from it. Dr. Hartmann's team is working to better understand the steps that precede breast cancer and which of them can be recognized in benign breast tissue. In a previous study, published in the New England Journal of Medicine (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16034008&query_

hl=3&itool=pubmed_docsum) in 2005, they showed that certain types of benign breast disease increase the risk of breast cancer.

The current study contributes to Mayo's emerging model that seeks to define individual women's risk more precisely and thus be able to tailor screening and risk-reducing measures to women depending on their individual risks.

The investigators found that among women with benign breast disease and little or no breast tissue involution, risk for developing breast cancer was twice that of women whose breast glandular tissues had been replaced completely with connective and fatty tissue (53 percent had complete involution as they aged beyond 70 years).

The study included 8,736 women who had breast biopsies at Mayo Clinic that were benign during a 25-year period starting in 1967. Breast tissue samples from this Mayo Clinic Benign Breast Disease cohort were evaluated to determine extent of involution. As a group, the Mayo cohort was at 40 percent increased risk of breast cancer compared to a larger population of presumably healthy women who comprise the Iowa Surveillance, Epidemiology and End Results (SEER) registry. This increased risk has been seen in other cohorts of women with benign breast tissue. However, those in the Mayo cohort who had complete breast lobular involution had no more risk of developing breast cancer than the baseline established in the Iowa SEER cohort.

The researchers found that hormone replacement therapy and prior pregnancies play a role in progression of involution. Hormonal replacement therapy had a slight impact on amount of involution. More women (22.9 percent) who never took hormone replacement had complete involution of mammary tissue than women (20.3 percent) who were treated with estrogen, progesterone or combinations of these two female hormones. Women who gave birth to more than three children retained a greater number of breast lobules. More women (27 percent) who had no children had complete involution, while only 18 percent of women with four children completed mammary involution. Breast-feeding of children had no impact on extent of involution.

"The research community has not focused on breast involution in recent years, nor has this natural process previously been linked to breast cancer risk," reports Dr. Hartmann. "Our study is the first to establish that the extent of breast involution relates directly to risk for breast cancer." She also says that women who would otherwise be considered at high risk (such as those with atypia) appear to have reduced risk when greater degrees of involution are present.

By documenting involution status in a woman's background breast tissue, cancer physicians have another important variable to aid in predicting a woman's risk, at least in women with benign breast tissue. This information can be considered with epidemiological background, individual factors such as age and reproductive history. Ultimately, it is hoped that biomarkers will be defined that contribute to the risk of breast cancer, and these will be integrated into a comprehensive Mayo model for breast cancer risk assessment.

Dr. Hartmann added that by appraising an individual's personal information within a complete, integrated model for predicting risk, every woman's breast cancer risk can be determined with precision and accuracy, leading to the patient's optimal peace of mind based on accurate risk assessment and the appropriate level of preventive intercession and awareness.

Elizabeth Zimmermann | EurekAlert!
Further information:
http://www.mayo.edu
http://www.mayoclinic.com

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>