Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic study observes normal aging process lowers breast cancer risk

16.11.2006
Normal aging of breast tissue lessens breast cancer risk, reports a new study by Mayo Clinic Cancer Center researchers published in the Nov. 15 issue of the Journal of the National Cancer Institute.

As most women get older, and especially after menopause, the milk-producing glands (lobules) shut down -- a process known as lobular regression, or involution. Since breast cancer is thought to originate in the lobules, their reduced size and number decreases the chance of cancer formation. Women who experience complete involution have half the risk of developing breast cancer of those who do not.

"The risk of breast cancer increases among women who have no breast involution as they age," says Lynn Hartmann, M.D., Mayo Clinic oncologist and lead investigator of the study. "This study identifies specific groups of women who are at lower or higher risks of breast cancer due to their extent of involution and factors such as age, family cancer history, reproductive history and types of benign breast disease."

Breast cancer is a significant threat to women. The American Cancer Society reports that more than 250,000 women will be diagnosed in the United States this year with breast cancer, and at least 40,000 will die from it. Dr. Hartmann's team is working to better understand the steps that precede breast cancer and which of them can be recognized in benign breast tissue. In a previous study, published in the New England Journal of Medicine (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16034008&query_

hl=3&itool=pubmed_docsum) in 2005, they showed that certain types of benign breast disease increase the risk of breast cancer.

The current study contributes to Mayo's emerging model that seeks to define individual women's risk more precisely and thus be able to tailor screening and risk-reducing measures to women depending on their individual risks.

The investigators found that among women with benign breast disease and little or no breast tissue involution, risk for developing breast cancer was twice that of women whose breast glandular tissues had been replaced completely with connective and fatty tissue (53 percent had complete involution as they aged beyond 70 years).

The study included 8,736 women who had breast biopsies at Mayo Clinic that were benign during a 25-year period starting in 1967. Breast tissue samples from this Mayo Clinic Benign Breast Disease cohort were evaluated to determine extent of involution. As a group, the Mayo cohort was at 40 percent increased risk of breast cancer compared to a larger population of presumably healthy women who comprise the Iowa Surveillance, Epidemiology and End Results (SEER) registry. This increased risk has been seen in other cohorts of women with benign breast tissue. However, those in the Mayo cohort who had complete breast lobular involution had no more risk of developing breast cancer than the baseline established in the Iowa SEER cohort.

The researchers found that hormone replacement therapy and prior pregnancies play a role in progression of involution. Hormonal replacement therapy had a slight impact on amount of involution. More women (22.9 percent) who never took hormone replacement had complete involution of mammary tissue than women (20.3 percent) who were treated with estrogen, progesterone or combinations of these two female hormones. Women who gave birth to more than three children retained a greater number of breast lobules. More women (27 percent) who had no children had complete involution, while only 18 percent of women with four children completed mammary involution. Breast-feeding of children had no impact on extent of involution.

"The research community has not focused on breast involution in recent years, nor has this natural process previously been linked to breast cancer risk," reports Dr. Hartmann. "Our study is the first to establish that the extent of breast involution relates directly to risk for breast cancer." She also says that women who would otherwise be considered at high risk (such as those with atypia) appear to have reduced risk when greater degrees of involution are present.

By documenting involution status in a woman's background breast tissue, cancer physicians have another important variable to aid in predicting a woman's risk, at least in women with benign breast tissue. This information can be considered with epidemiological background, individual factors such as age and reproductive history. Ultimately, it is hoped that biomarkers will be defined that contribute to the risk of breast cancer, and these will be integrated into a comprehensive Mayo model for breast cancer risk assessment.

Dr. Hartmann added that by appraising an individual's personal information within a complete, integrated model for predicting risk, every woman's breast cancer risk can be determined with precision and accuracy, leading to the patient's optimal peace of mind based on accurate risk assessment and the appropriate level of preventive intercession and awareness.

Elizabeth Zimmermann | EurekAlert!
Further information:
http://www.mayo.edu
http://www.mayoclinic.com

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>