Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRI detects early heart damage in patients with sarcoidosis

14.11.2006
To detect heart damage early in patients with the immune system disorder sarcoidosis, who are at elevated risk of dieing from heart problems, magnetic resonance imaging is twice as sensitive as conventional methods, according to a study by Duke University Medical Center cardiologists.

By using magnetic resonance imaging, or MRI, to discover minute areas of heart damage before they grow larger, physicians may be able to take action to prevent sudden cardiac death, which is a leading cause of death in patients with sarcoidosis, the researchers said.

Sarcoidosis is characterized by the formation of tiny inflammatory growths called granulomas. Although granulomas tend to cluster in the lungs, in lymph nodes and under the skin, they also can form in the heart. When they do, it currently is difficult to determine which patients will develop heart damage, the researchers said.

"We found that MRI was sensitive in detecting small areas of damage in the hearts of patients with sarcoidosis, and we were further able to correlate these areas of damage with future adverse outcomes," said Duke cardiologist Manesh Patel, M.D., who presented the results of the study on Sunday, Nov. 12, at the annual scientific sessions of the American Heart Association, in Chicago. "The MRI technology is very good at obtaining high-resolution images of heart muscle and distinguishing normally functioning heart cells from those that are damaged or destroyed."

The study was supported by the Duke Cardiovascular Magnetic Resonance Center.

According to Patel, conventional methods identify cardiac damage in only 5 percent to 7 percent of sarcoidosis patients. The standard evaluation includes an electrocardiogram, which is an electrical test of the heart, coupled with one of a number of different cardiac imaging techniques.

But previous studies in which autopsies were performed on sarcoidosis patients indicate that up to 30 percent of such patients exhibit evidence of heart damage, he said.

"For this reason, we hypothesized that cardiac damage in sarcoidosis patients is more common and is often unrecognized, explaining why it could be a major cause of death in these patients," Patel said.

For their analysis, the Duke researchers identified 81 sarcoidosis patients consecutively referred for evaluation at Duke. All of the patients received a standard clinical evaluation including an electrocardiogram and on average 1.6 non-cardiac MRI imaging tests, and a cardiac MRI scan. The conventional method identified 10 patients (12.3 percent) with heart damage, while the cardiac MRI identified 21 patients (26 percent) with areas of heart damage, Patel said.

The damage observed often did not fit the pattern of damage caused by coronary artery disease, Patel said, a finding which suggested that the sarcoidosis was the cause of the damage.

The patients in the study were followed by their treating physicians for an average of 13 months, and Patel's team examined their records to see if they had died or had experienced medical problems related to the heart's electrical system.

According to Patel, it is commonly thought that when sarcoidosis damages a portion of heart muscle, the damaged areas can block or reroute the electrical impulses that keep the heart beating. Sudden cardiac death can occur when the heart's internal electrical system is disrupted, causing the heart to beat erratically and, in some cases, to stop.

By the end of the follow-up period, five patients had died from cardiac causes, two had experienced heart-beat abnormalities requiring treatment to bring the heart back into normal rhythm and one needed a pacemaker implanted to maintain normal heart rhythm, Patel said.

The imaging technique that the team used is called delayed enhancement cardiac MRI. In this approach, the researchers inject trace amounts of the element gandolinium into patients before administering the MRI scan.

"Gandolinium is an inert metal, and it cannot enter normally functioning heart muscle cells," Patel said. "However, if small areas of heart muscle are damaged, there are areas that absorb the gandolinium like a sponge. The MRI then detects where the gandolinium accumulates and shows us where the damage is located."

Richard Merritt | EurekAlert!
Further information:
http://www.mc.duke.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>