Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patients respond well to first study to test higher doses of an anti-cancer drug

13.11.2006
Clinical trial reveals limited side effects and evidence of clinical activity

Researchers in the UK and the United States have found that a drug composed of an antibody carrying a highly toxic anti-cancer agent is well tolerated by patients at much higher doses than have been used before.

The drug, BB-10901 (huN901-DM1), is being tested in a phase I clinical trial in patients who have relapsed or failed to respond to previous treatment for a range of cancers, such as small cell lung cancer (SCLC), other tumours in the lungs of neuroendocrine origin and non-pulmonary small cell carcinomas. Although the trial is not designed to test the efficacy of the drug, researchers report promising clinical responses in patients, including one patient who has remained in remission for more than a year.

Dr Paul Lorigan reported to the EORTC-NCI-AACR [1] Symposium on Molecular Targets and Cancer Therapeutics in Prague today (Friday): "The results are important in that, in contrast to a prior regimen investigated in a phase I trial in the United States, significantly higher dose intensity is achieved with the current schedule. This has implications for the design of future trials with this agent, especially as the amount of the drug given is likely to be important in determining clinical response and outcome. In addition, the presence of a durable, complete response as well as other hints of clinical activity are very encouraging.

"The tolerability of this agent compares very favourably with that of standard chemotherapy. The lack of clinically significant bone marrow toxicity by BB-10901 raises the possibility that such an agent could be used either alone or in combination with standard chemotherapy in future clinical trials."

Dr Lorigan, a senior lecturer in medical oncology at the Christie Hospital, Manchester, UK, worked with colleagues in the UK and USA to investigate different dose levels, any adverse effects and how the drug was cleared from the body (pharmacokinetics). The drug, also known as huN901-DM1, is an immunoconjugate – a hybrid molecule specifically designed to deliver a potent cell-killing agent to cancer cells – and is created by attaching a cytotoxic drug DM1 to a monoclonal antibody, huN901. It binds to cells that have the molecule CD56 on their cell surfaces and the DM1 then can kill the cells. Several tumours are CD56 positive, including SCLC, neuroendocrine tumours, Wilms' tumours, and multiple myeloma.

The researchers gave the drug by intravenous infusions for three consecutive days every three weeks. The researchers initially enrolled four patients at each dose level (4, 8, 16, 24, 36, 48, 60, 75 milligrams per squared metre of body surface area (mg/m2)). When a patient experienced a dose-limiting toxicity the cohort was enlarged to six patients at that dose. So far, 40 patients have been treated.

Adverse effects were seen in six patients and included constipation, fatigue, leg pain, headache, inflamed pancreas, hypotension and myocardial infarction. Dr Lorigan said: "In general, the study drug was well tolerated, particularly when compared to standard chemotherapy. There was no clinically significant myelosuppression, most probably because the immunoconjugate is targeted at the tumour rather than the normal cells. Also, there was no clinical evidence of serious allergic or infusion reactions. The one side effect we have seen at higher doses is headache. This seems to be reduced if we increase the infusion time, and it may respond to other medication given with the study drug – we are investigating this further."

One patient with metastatic, recurrent Merkel cell carcinoma (a rare, aggressive cancer that develops on, or just beneath, the skin and in hair follicles) had a durable, complete response and remains in clinical remission more than a year after treatment. "This patient had numerous prior relapses and had failed standard chemotherapy," said Dr Lorigan. Eight patients had stable disease lasting between six and 21 weeks.

"It is difficult to draw any reliable conclusions from an early phase study such as this, but we are encouraged to see early signs of activity. While some tumours treated were indolent, others such as extensive SCLC were very aggressive. The presence of stable disease in a patient with SCLC over six cycles of therapy is very encouraging," he continued.

Pharmacokinetics showed that drug was able to tackle tumour cells expressing CD56 more effectively at the higher doses. The researchers have not reached the maximum tolerated dose yet and are continuing to enrol new patients.

"We are considering amending the protocol and adding three patients at 75 mg/m2/day, with pre-medication prior to infusions of BB-10901. While we have not seen dose-limiting toxicity at this level with the slower infusion (without pre-medication), we have seen headache in two patients, which is a moderate adverse effect. We anticipate that pre-medication will ameliorate or prevent this symptom. If well tolerated, we would then increase the dose to 94 mg/m2/day," said Dr Lorigan.

He concluded: "Treatment options for these patients are limited and we are encouraged by the early results with this novel agent. We are grateful to the patients, their families, the investigators, clinical staff, and our colleagues at ImmunoGen (the sponsor of the clinical study) for their participation and continued support of this trial."

Emma Mason | EurekAlert!
Further information:
http://www.eortc.org

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Matabele ants: Travelling faster with detours

22.05.2018 | Life Sciences

Flow of cerebrospinal fluid regulates neural stem cell division

22.05.2018 | Life Sciences

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>