Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patients respond well to first study to test higher doses of an anti-cancer drug

13.11.2006
Clinical trial reveals limited side effects and evidence of clinical activity

Researchers in the UK and the United States have found that a drug composed of an antibody carrying a highly toxic anti-cancer agent is well tolerated by patients at much higher doses than have been used before.

The drug, BB-10901 (huN901-DM1), is being tested in a phase I clinical trial in patients who have relapsed or failed to respond to previous treatment for a range of cancers, such as small cell lung cancer (SCLC), other tumours in the lungs of neuroendocrine origin and non-pulmonary small cell carcinomas. Although the trial is not designed to test the efficacy of the drug, researchers report promising clinical responses in patients, including one patient who has remained in remission for more than a year.

Dr Paul Lorigan reported to the EORTC-NCI-AACR [1] Symposium on Molecular Targets and Cancer Therapeutics in Prague today (Friday): "The results are important in that, in contrast to a prior regimen investigated in a phase I trial in the United States, significantly higher dose intensity is achieved with the current schedule. This has implications for the design of future trials with this agent, especially as the amount of the drug given is likely to be important in determining clinical response and outcome. In addition, the presence of a durable, complete response as well as other hints of clinical activity are very encouraging.

"The tolerability of this agent compares very favourably with that of standard chemotherapy. The lack of clinically significant bone marrow toxicity by BB-10901 raises the possibility that such an agent could be used either alone or in combination with standard chemotherapy in future clinical trials."

Dr Lorigan, a senior lecturer in medical oncology at the Christie Hospital, Manchester, UK, worked with colleagues in the UK and USA to investigate different dose levels, any adverse effects and how the drug was cleared from the body (pharmacokinetics). The drug, also known as huN901-DM1, is an immunoconjugate – a hybrid molecule specifically designed to deliver a potent cell-killing agent to cancer cells – and is created by attaching a cytotoxic drug DM1 to a monoclonal antibody, huN901. It binds to cells that have the molecule CD56 on their cell surfaces and the DM1 then can kill the cells. Several tumours are CD56 positive, including SCLC, neuroendocrine tumours, Wilms' tumours, and multiple myeloma.

The researchers gave the drug by intravenous infusions for three consecutive days every three weeks. The researchers initially enrolled four patients at each dose level (4, 8, 16, 24, 36, 48, 60, 75 milligrams per squared metre of body surface area (mg/m2)). When a patient experienced a dose-limiting toxicity the cohort was enlarged to six patients at that dose. So far, 40 patients have been treated.

Adverse effects were seen in six patients and included constipation, fatigue, leg pain, headache, inflamed pancreas, hypotension and myocardial infarction. Dr Lorigan said: "In general, the study drug was well tolerated, particularly when compared to standard chemotherapy. There was no clinically significant myelosuppression, most probably because the immunoconjugate is targeted at the tumour rather than the normal cells. Also, there was no clinical evidence of serious allergic or infusion reactions. The one side effect we have seen at higher doses is headache. This seems to be reduced if we increase the infusion time, and it may respond to other medication given with the study drug – we are investigating this further."

One patient with metastatic, recurrent Merkel cell carcinoma (a rare, aggressive cancer that develops on, or just beneath, the skin and in hair follicles) had a durable, complete response and remains in clinical remission more than a year after treatment. "This patient had numerous prior relapses and had failed standard chemotherapy," said Dr Lorigan. Eight patients had stable disease lasting between six and 21 weeks.

"It is difficult to draw any reliable conclusions from an early phase study such as this, but we are encouraged to see early signs of activity. While some tumours treated were indolent, others such as extensive SCLC were very aggressive. The presence of stable disease in a patient with SCLC over six cycles of therapy is very encouraging," he continued.

Pharmacokinetics showed that drug was able to tackle tumour cells expressing CD56 more effectively at the higher doses. The researchers have not reached the maximum tolerated dose yet and are continuing to enrol new patients.

"We are considering amending the protocol and adding three patients at 75 mg/m2/day, with pre-medication prior to infusions of BB-10901. While we have not seen dose-limiting toxicity at this level with the slower infusion (without pre-medication), we have seen headache in two patients, which is a moderate adverse effect. We anticipate that pre-medication will ameliorate or prevent this symptom. If well tolerated, we would then increase the dose to 94 mg/m2/day," said Dr Lorigan.

He concluded: "Treatment options for these patients are limited and we are encouraged by the early results with this novel agent. We are grateful to the patients, their families, the investigators, clinical staff, and our colleagues at ImmunoGen (the sponsor of the clinical study) for their participation and continued support of this trial."

Emma Mason | EurekAlert!
Further information:
http://www.eortc.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>