Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


1st international study group for new 'movement' discipline

Movement ecology is on the move, with the world's first international research group on this topic having begun its work this fall at the Hebrew University of Jerusalem's Institute for Advanced Studies

Movement ecology is a developing academic pursuit, combining expertise in a variety of fields, including biology, ecology, botany, environmental science, physics, mathematics, virology and others.

It has been largely developed by a Hebrew University of Jerusalem researcher, Prof. Ran Nathan, who heads the Movement Ecology Laboratory in the Department of Evolution, Systematics and Ecology at the university's Alexander Silberman Institute of Life Sciences.. It involves the study of how plant and animal matter travels from one place to another, sometimes for great distances and in highly surprising ways.

The research group now at work at the Hebrew University's Institute for Advanced Studies was convened at the initiative and under the leadership of Prof. Nathan and includes participants from the University of California at Berkeley, the University of California at Davis, Princeton University, Stony Brook University and Rutgers University, all from the U.S.; the Spanish Research Council; and from the Hebrew University, Ben-Gurion University of the Negev and the Technion - Israel Institute of Technology.

Prof. Nathan emphasizes that organism movement research is central to the understanding of how ecological systems work and has important implications for human life. A comprehensive understanding of movement as a process will help to conserve biodiversity, adapt to changes produced by global warming, and cope with environmental threats such as infectious diseases, invasive alien species, agricultural pests and the spread of allergens.

The field of movement ecology and Prof. Nathan were given a large boost of recognition in a recent special issue of Science magazine on migration and dispersal. The issue included an article by Prof. Ran Nathan on his specialty of long-distance dispersal of plants.

In addition, the same issue contained a news article which largely focused on the work of Nathan and his students, as well as others in the U.S., Britain and Australia, focusing on dispersal of both plants and animals.

The article noted that researchers have sought, for centuries, "to understand when, why and how various species crawl, swim, fly, float or hoof it to new locales. That work has led to maps of migration routes and details about dispersals."

"But," the article quoted Prof. Nathan as saying, "few biologists have tried to fit those data into a big picture of movement in general." Now, said the article, through the new discipline called movement ecology, Nathan and others "are beginning to derive testable hypotheses about the mobile behaviors of animals, microbes and even the seeds of plants. Their goal is to join empirical work to theories and to build models that fill in gaps in our understanding of movement -- be it over millimeters or continents or by groups of individuals – in the natural world."

Last year, Nathan was chosen as the winner of the Hebrew University President's Prize for the Outstanding Young Researcher for his pioneering work on seed dispersal. In May this year he was awarded the prestigious Wilhelm Bessel Research Award from the Humboldt Foundation of Germany.

Jerry Barach | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>