Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why our shifty eyes don't drive us crazy

10.11.2006
Pitt, NIH researchers discover circuit underlying visual stability

Our eyes are constantly making saccades, or little jumps. Yet the world appears to us as a smooth whole. Somehow, the brain's visual system "knows" where the eyes are about to move and is able to adjust for that movement. In a paper published online this week in Nature, researchers at the University of Pittsburgh and the National Eye Institute (NEI) for the first time provide a circuit-level explanation as to why.

"This is a classic problem in neuroscience," says Marc Sommer, assistant professor of neuroscience at Pitt, who coauthored the paper with Robert Wurtz, senior investigator at NEI, one of the National Institutes of Health. "People have been searching for a circuit to accomplish this stability for the last 50 years, and we think we've made good progress with this study."

In 1950, Nobel laureate Roger Sperry hypothesized that when the brain commands the eyes to move, it also sends a corollary discharge, or internal copy, of that command to the visual system. Sommer and Wurtz showed in a 2002 Science paper that a pathway from brainstem to frontal cortex conveys a corollary discharge signal in the brains of monkeys. They suggested that this pathway might cause visual neurons of the cortex to suddenly shift their receptive field--their window on the world--just before a saccade. Such neurons with shifting receptive fields had been discovered by Pitt Professor of Neuroscience Carol Colby and colleagues in 1992.

In their current paper, which will be published in the Nov. 16 print edition of Nature, Sommer and Wurtz completed the circuit. They showed that the receptive fields in cortex are shifted because of the corollary discharge from the brainstem. To do this, they exploited the fact that the signals are relayed via the thalamus, a crucial intermediary. By knocking out the relay neurons, they interrupted the pathway. They found that receptive field shifts were curtailed by more than half.

A similar circuit is likely to exist in human brains, the researchers say. With this study, Sommer and Wurtz also provide a framework for studying corollary discharge in other sensory systems, such as hearing: Even when you move your head around, you still hear sounds around you as coming from the same place.

In future studies, Sommer and his graduate students at Pitt will perform the first direct test of the visual stability hypothesis. To determine whether shifting receptive fields are responsible for visual stability, the shifts will be disrupted in monkeys trained to detect visual motion. The monkeys could then report whether their world appears to be moving around abnormally as eye movements are made.

Karen Hoffmann | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>