Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancestor’s diet changed seasonally

10.11.2006
A team of international scientists, including a researcher from the University of Bradford, has revealed how early human relatives varied their diet with the seasons about 1.8 million years ago.

The study appearing in the November issue of the journal Science shows that the eating habits of an early human relative called Paranthropus robustus varied between seasons and even years.

The massive facial and dental “architecture” of Paranthropus lead scientists to believe that they were vegetarians specialising in extremely hard plant foods that required a lot of crushing. Not so, say the team of scientists.

Co-author of the study, Julia Lee-Thorp, Professor of Archaeological Sciences at the University of Bradford, said: “Previously we had only a very averaged view about the diet of Paranthropus robustus. Our earlier carbon isotope work hinted that they were not specialist vegetarians, but gave no details. Now, by analysing tiny increments of fossil enamel, we can demonstrate that what they ate changed during the year.”

The study includes researchers from the University of Colorado at Boulder, Texas A&M University, Ohio State University and the University of Bradford.

The study analysed four fossil teeth of Paranthropus from Swartkrans, South Africa. Researchers used a laser to vapourise tiny samples of enamel, which were analysed in a mass spectrometer to determine the ratio of carbon – 13 to carbon – 12 isotopes.

The “laser ablation method” was fine-tuned at the University of Utah, where the analyses were carried out, so that it was able to handle human-sized teeth.

If the sample has a relatively high ratio of carbon – 13 to carbon -12, it means the early human relative ate a diet rich in C4 plants, such as seeds and roots from grasses. Importantly, they may also have eaten animals that ate the C4 plants.

Alternatively if the sample has a lower ratio of carbon – 13 to carbon -12, it means that the Paranthropus was eating C3 foods that included leaves and fruits of trees and shrubs.

African savannas have both C3 (trees and herbs) and C4 plants (tropical grasses), while forests have only C3 plants.

Analyses of the fossil Paranthropus teeth revealed that their diets varied in the proportion of C3 - and C4 – derived carbon both seasonally and from year to year. The year to year variation in Paranthropus’ diet “might reflect yearly differences in rainfall-related food availability,” the study’s authors write. “Another possible explanation is that these individuals were migrating between more wooded habitats and more open savannas.”

The researchers noted that Paranthropus has often been portrayed as a specialist that lacked a varied diet, and that has been used to explain why Paranthropus became extinct as Africa became drier, while tool-wielding Homo – with a highly varied diet – survived and became more successful.

The new study casts doubt on that theory by showing that Paranthropus, like Homo, also consumed a variety of foods. It shows that they were able to change their food-collecting strategies in response to changing conditions. “This implies that they were very adaptable and flexible.” says Professor Lee-Thorp.

The researchers conclude: “Thus, other biological, social or cultural differences may be needed to explain the different fates of Homo and Paranthropus.”

Emma Banks | alfa
Further information:
http://www.bradford.ac.uk/corpcomms/pressreleases

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>