Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancestor’s diet changed seasonally

10.11.2006
A team of international scientists, including a researcher from the University of Bradford, has revealed how early human relatives varied their diet with the seasons about 1.8 million years ago.

The study appearing in the November issue of the journal Science shows that the eating habits of an early human relative called Paranthropus robustus varied between seasons and even years.

The massive facial and dental “architecture” of Paranthropus lead scientists to believe that they were vegetarians specialising in extremely hard plant foods that required a lot of crushing. Not so, say the team of scientists.

Co-author of the study, Julia Lee-Thorp, Professor of Archaeological Sciences at the University of Bradford, said: “Previously we had only a very averaged view about the diet of Paranthropus robustus. Our earlier carbon isotope work hinted that they were not specialist vegetarians, but gave no details. Now, by analysing tiny increments of fossil enamel, we can demonstrate that what they ate changed during the year.”

The study includes researchers from the University of Colorado at Boulder, Texas A&M University, Ohio State University and the University of Bradford.

The study analysed four fossil teeth of Paranthropus from Swartkrans, South Africa. Researchers used a laser to vapourise tiny samples of enamel, which were analysed in a mass spectrometer to determine the ratio of carbon – 13 to carbon – 12 isotopes.

The “laser ablation method” was fine-tuned at the University of Utah, where the analyses were carried out, so that it was able to handle human-sized teeth.

If the sample has a relatively high ratio of carbon – 13 to carbon -12, it means the early human relative ate a diet rich in C4 plants, such as seeds and roots from grasses. Importantly, they may also have eaten animals that ate the C4 plants.

Alternatively if the sample has a lower ratio of carbon – 13 to carbon -12, it means that the Paranthropus was eating C3 foods that included leaves and fruits of trees and shrubs.

African savannas have both C3 (trees and herbs) and C4 plants (tropical grasses), while forests have only C3 plants.

Analyses of the fossil Paranthropus teeth revealed that their diets varied in the proportion of C3 - and C4 – derived carbon both seasonally and from year to year. The year to year variation in Paranthropus’ diet “might reflect yearly differences in rainfall-related food availability,” the study’s authors write. “Another possible explanation is that these individuals were migrating between more wooded habitats and more open savannas.”

The researchers noted that Paranthropus has often been portrayed as a specialist that lacked a varied diet, and that has been used to explain why Paranthropus became extinct as Africa became drier, while tool-wielding Homo – with a highly varied diet – survived and became more successful.

The new study casts doubt on that theory by showing that Paranthropus, like Homo, also consumed a variety of foods. It shows that they were able to change their food-collecting strategies in response to changing conditions. “This implies that they were very adaptable and flexible.” says Professor Lee-Thorp.

The researchers conclude: “Thus, other biological, social or cultural differences may be needed to explain the different fates of Homo and Paranthropus.”

Emma Banks | alfa
Further information:
http://www.bradford.ac.uk/corpcomms/pressreleases

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>