Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why exercising muscles tire when needed most

09.11.2006
Researchers at Rice and Harvard link metabolism to muscle fatigue in the body

The cause of muscle fatigue during intense exercise is linked directly to the muscle’s reliance on anaerobic metabolism for force production, according to a new study by researchers at Rice and Harvard universities.

Published in the November issue of the American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, the study implicates the reliance on anaerobic energy release as a key factor in the onset of muscle fatigue and impaired exercise performance. While the mechanism of how anaerobic pathways might impair force production remains under active investigation, the new results suggest that the mechanisms of muscular fatigue in the body are probably similar to the mechanisms being discovered in laboratory research on cell and tissue samples.

The researchers had six males perform 15 all-out sprints on a stationary cycle at varying pedal forces, which meant varying muscle-force requirements. Besides conventional cycling, the researchers also had the study participants perform similar all-out sprints with only one leg while the unused leg rested on an adjacent stool. Although this approach may seem unorthodox, the Rice-Harvard group knew from previous work that the metabolic pathways providing the chemical energy necessary for contraction would differ appreciably during the one- and two-legged conditions, said principal investigator Peter Weyand, assistant professor in kinesiology at Rice.

During exercise, muscles continuously break down and resynthesize the chemical ATP (adenosine triphosphate), which serves as the immediate source of energy for muscle contractions. During less vigorous muscular activity, essentially all of the ATP needed for muscular contraction can be provided via aerobic pathways that utilize oxygen delivered via the bloodstream. The aerobic pathways allow moderate levels of force to be generated without fatigue for prolonged periods, but can only support modest levels of muscular activity, due to the upper limits on how rapidly blood and oxygen can be supplied to the working muscles by the heart. Consequently, during more vigorous exercise, such as sprinting or lifting heavy loads or weights, the aerobic provision of ATP is supplemented by anaerobic pathways that do not rely on oxygen delivery. While the anaerobic pathways provide ATP very rapidly, their capacity is finite and must be replenished after each bout.

The researchers knew that the rates of oxygen delivery, aerobic metabolism and the amount of “aerobic” muscle force generated would be much greater in the active leg under the one-legged condition simply because the heart and circulation can provide relatively more blood and oxygen when only one limb is active. Thus, the researchers were confident that a much greater fraction of the muscle force required would be provided via chemical energy that came from aerobic pathways for all of the one-legged versus the two-legged sprint trials.

The cyclists were asked to pedal stationary cycles for a series of sprints at the rate of 100 revolutions per minute, continuing an all-out effort until they could no longer maintain this speed for at least five seconds. The researchers simultaneously measured the forces the subjects applied to the pedals, the amount of oxygen they inhaled and the electrical activity of the thigh muscles used to apply pedal force. Electrodes were attached to the skin of the thigh to measure electrical activity in the leg muscles.

Weyand and colleagues found that the electrical activity of the leg muscles increased throughout each workout. Such increases are common during fatiguing contractions as individual muscle fibers develop less force over time. “Under these conditions, the exercise can be continued only if the individual activates new, unfatigued muscle to augment the impaired force from the muscle fibers originally activated,” Weyand said. “The increase in electrical signals from the active muscles can be used to indirectly assess the amount of fatigue the muscles are experiencing.”

As the researchers had hypothesized, the subjects had much higher peak rates of aerobic metabolism and pedal forces per leg when they used just one leg. During both the one- and two-legged sprints performed at pedal forces greater than those that could be supported via the aerobic pathways, the researchers observed progressive increases in electrical activity in the thigh muscles. “This indicates that new muscle fibers were being recruited throughout each sprint trial to provide the muscle force necessary to maintain a constant pedal force required by the sprint,” Weyand said.

Due to the lesser pedal forces supported via the aerobic pathways during two-legged cycling, the onset of compensatory muscle recruitment occurred at lower thresholds of pedal and muscle force in this mode. Similarly, at equivalent pedal forces, the rates of increase in compensatory electrical activity in the muscles were greater during two-legged than one-legged sprint cycling. “We attribute these between-mode differences in the rates at which muscles become fatigued and additional muscle is recruited to the greater reliance on anaerobic pathways of ATP resynthesis for force production during two-legged cycling versus one-legged cycling,” Weyand said.

“Although scientists have observed similar fatiguing patterns of electrical activity in people holding heavy objects, performing calisthenics and fine-motor tasks, muscular force decrements had not been shown previously to be so closely linked to the anaerobic pathways of ATP resynthesis,” he said.

Weyand suggested that the study raises the possibility that relying on the anaerobic pathways for chemical energy might be intrinsically fatiguing. “Experts focusing on locomotion and whole-body activities have attributed performance limitations during running, cycling, swimming and other athletic activities that involve many muscles simultaneously to the maximum rates at which ATP can be resynthesized from all pathways and not to an impaired ability of skeletal muscles to produce force during contraction,” he said. “Although bicep curls might not induce huffing, puffing and the same level of discomfort incurred by an all-out sprint, your muscles might not know the difference.”

Weyand’s coauthors on the paper are Matthew Bundle, formerly a Rice research fellow in the Department of Kinesiology and now an assistant professor at the University of Wyoming; and Carrie Ernst, Matthew Bellizzi and Seth Wright, all at Harvard.

The study was funded by the U.S. Army Medical and Materiel Command, the National Institutes of Health and the National Research Council.

B.J. Almond | EurekAlert!
Further information:
http://www.rice.edu

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>