Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Crack Rhino Horn Riddle

08.11.2006
Rhinoceros horns have long been objects of mythological beliefs. Some cultures prize them for their supposed magical or medicinal qualities. Others have used them as dagger handles or good luck charms. But new research at Ohio University removes some of the mystique by explaining how the horn gets its distinctive curve and sharply pointed tip.

Scientists have discovered new details about the structural materials that form the horn and the role those materials play in the development of the horn’s characteristic shape.

The horns of most animals have a bony core covered by a thin sheath of keratin, the same substance as hair and nails. Rhino horns are unique, however, because they are composed entirely of keratin. Scientists had been puzzled by the difference, but the Ohio University study now has revealed an interesting clue: dark patches running through the center of the horns.

The team examined the heads of rhinos that died of natural causes and were donated by The Wilds in Cumberland, Ohio, and the Phoenix Zoo. Researchers conducted CT scans on the horns at O’Bleness Memorial Hospital in Athens and found dense mineral deposits made of calcium and melanin in the middle.

The calcium deposits make the horn core harder and stronger, and the melanin protects the core from breakdown by the sun’s UV rays, the scientists report. The softer outer portion of the horn weakens with sun exposure and is worn into its distinctive shape through horn clashing and by being rubbed on the ground and vegetation. The structure of the rhino horns is similar to a pencil’s tough lead core and weaker wood periphery, which allows the horns to be honed to a sharp point.

The study also ends speculation that the horn was simply a clump of modified hair.

“The horns most closely resemble the structure of horses’ hoofs, turtle beaks and cockatoo bills. This might be related to the strength of these materials, although more research is needed in this area,” said Tobin Hieronymus, a doctoral student in biological sciences and lead author on the study.

The study also found that the melanin and calcium patches appear in yearly growth surges but the effects of temperature, diet and stress on the growth are still unknown. The results of the horn growth study may be of interest to conservation groups whose goal is to strengthen rhino populations and reduce the poaching of horn for the black market.

“Ultimately, we think our findings will help dispel some of the folk wisdom attached to the horn. The more we can learn about the horn, the better we can understand and manage rhino populations in the wild and in captivity,” said Lawrence Witmer, a professor of anatomy in Ohio University’s College of Osteopathic Medicine and director of the project.

The Journal of Morphology published the research findings in its October issue. Witmer and Ryan Ridgely were co-authors of the study, which was funded by the National Science Foundation and conducted with the assistance of O’Bleness Memorial Hospital in Athens, Ohio, and The Wilds, an Ohio animal preserve.

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>