Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expect a Warmer, Wetter World this Century, Computer Models Agree

23.10.2006
Recent episodes of deadly heat in the United States and Europe, long dry spells across the U.S. West, and heavy bursts of rain and snow across much of North America and Eurasia hint at longer-term changes to come, according to a new study based on several of the world's most advanced climate models.
Much of the world will face an enhanced risk of heat waves, intense precipitation, and other weather extremes, conclude scientists from the National Center for Atmospheric Research (NCAR), Texas Tech University, and Australia's Bureau of Meteorology Research Centre.

The new study, "Going to the Extremes," will appear in the December issue of the journal Climatic Change.

Many previous studies have looked at how average temperature or rainfall might change in the next century as greenhouse gases increase. However, the new research looks more specifically at how weather extremes could change.

"It's the extremes, not the averages, that cause the most damage to society and to many ecosystems," says NCAR scientist Claudia Tebaldi, lead author for the report. "We now have the first model-based consensus on how the risk of dangerous heat waves, intense rains, and other kinds of extreme weather will change in the next century."

The study is one of the first analyses to draw on extensive and sophisticated computer modeling recently carried out for the Intergovernmental Panel on Climate Change. The IPCC's next assessment report will be released early in 2007.

Tebaldi and colleagues based their work on simulations from nine different climate models for the periods 1980–1999 and 2080–2099. The simulations were created on supercomputers at research centers in France, Japan, Russia, and the United States. Each model simulated the 2080-2099 interval three times, varying the extent to which greenhouse gases accumulate in the atmosphere. These three scenarios were used to account for uncertainty over how fast society may act to reduce emissions of carbon dioxide and other greenhouse gases over coming decades.

From the model output, the scientists computed 10 different indices of climate extremes, with 5 related to temperature and 5 to moisture. For instance, a frost days index measures how many days per year temperatures dip below 32 degrees Fahrenheit, while a dry days index measures the length of each year's longest consecutive string of days without rain or snow. Because the impact of a given index can be stronger in one climatic zone than another, the authors expressed the results in terms of statistical significance at each location.

For all three greenhouse-gas scenarios, the models agree that by 2080-2099:

  • The number of extremely warm nights and the length of heat waves will increase significantly over nearly all land areas across the globe. During heat waves, very warm nights are often associated with fatalities because people and buildings have less chance to cool down overnight.
  • Most areas above about 40 degrees north will see a significant jump in the number of days with heavy precipitation (days with more than 0.40 inches). This includes the northern tier of U.S. states, Canada, and most of Europe.
  • Dry spells could lengthen significantly across the western United States, southern Europe, eastern Brazil, and several other areas. Dry spells are one of several factors in producing and intensifying droughts.
  • The average growing season could increase significantly across most of North America and Eurasia.

Most of these trends are significantly weaker for the lowest-emission scenario than for the moderate and high-emission scenarios. Thus, the authors add, lowering the output of greenhouse gases over the next century should reduce the risk that the most severe changes will occur.

The research was supported by the National Science Foundation, which is NCAR's primary sponsor, as well as by the U.S. Department of Energy and Environmental Protection Agency.

About the article
Title: "Going to the Extremes: An intercomparison of model-simulated historical and future changes in extreme events"

Author: Claudia Tebaldi, Katharine Hayhoe, Julie M. Arblaster, and Gerald A. Meehl

Publication: Climatic Change, December 2006

David Hosansky | EurekAlert!
Further information:
http://www.ucar.edu/news/releases/2006/wetterworld.shtml

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>