Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Color names: More universal than you might think

20.10.2006
From Abidji to English to Zapoteco, the perception and naming of color is remarkably consistent in the world's languages.

Across cultures, people tend to classify hundreds of different chromatic colors into eight distinct categories: red, green, yellow-or-orange, blue, purple, brown, pink and grue (green-or-blue), say researchers in this week's online early edition of the Proceedings of the National Academy of Sciences.

Some languages classify colors into fewer categories, but even these categories are composites of those eight listed above, said Delwin Lindsey, the study's lead author and an associate professor of psychology at Ohio State University.

“Though culture can influence how people name colors, inside our brains we're pretty much seeing the world in the same way,” he said. “It doesn't matter if you're a native of Ivory Coast who speaks Abidji or a Mexican who speaks Zapoteco.”

He conducted the study with Angela Brown, an associate professor of optometry at Ohio State.

Lindsey and Brown used data from the World Color Survey, a collection of color names supplied by 2,616 people of 110 mostly unwritten languages spoken by mostly preindustrial societies. The survey's 320 different colors are organized into eight rows of 40 color chips per row (black, white and grays are each in their own category.)

The researchers used the survey because it included many people from preindustrial societies whose color names are thought to be relatively uncontaminated by contact with highly industrialized cultures whose color names closely resemble those found in English.

Lindsey and Brown devised a statistical method that let them determine the optimum number of color categories based on the color terms uncovered in the study.

“My own intuition was that if we looked across the world at different languages, people would obviously use different names, but roughly we'd find maybe 11 names used to partition color space,” Lindsey said. “That's not at all the case.

“By looking at more traditional cultures, we found that many have fewer color names, yet these names correspond to colors that English-speaking cultures also discriminate linguistically,” he continued.

Using a technique called cluster analysis, he and Brown analyzed data gathered by previous color survey researchers. This approach helped them measure the similarity across all the different cultures in terms of how each applies name to color.

“We have names for 11 basic colors in English,” Lindsey said. “Some cultures have two, some have three. We wanted to know if the cultures that say they only have two color terms chose colors similar to those selected by cultures that have more color names.”

They found that colors fall into eight distinct categories.

“Across cultures the average color-naming patterns of the clusters all glossed easily into single or composite English patterns,” Lindsey said.

“Even though people are really diverse, when push comes to shove, they are incredibly English-like,” he said. “Many cultures don't have all of the English color categories, but they have many of them. And the ones that aren't exactly English turn out to be what we call composites – simple combinations of adjacent color categories.”

That, says Lindsey, helps explain categories like grue (green-or-blue) and yellow-or-orange.

The researchers found a major distinction between warm and cool categories for many of those cultures that have just two or three common colors. That distinction tended to coincide with English colors that are thought to be warm (yellows, reds and oranges) and cool (greens and blues.)

“While there is some diversity in the location of the color boundaries, there is an absolutely rock solid boundary across all the cultures, which English speakers would call warm and cool,” Lindsey said.

For example, some societies lump all the cool colors into one category, and all the warm colors into another category, while other societies subdivide warm and cool colors into several categories. In the case of the subdivided categories, there still exist color boundaries that separate warm from cool.

Lindsey said the next stage in this research is to look at physiology of color perception, as some researchers believe that infants have the innate ability to recognize certain colors.

Delwin Lindsey | EurekAlert!
Further information:
http://www.osu.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>