Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find a neural signature of bilingualism

19.10.2006
The team uses infrared light to study the brain

Dartmouth researchers have found areas in the brain that indicate bilingualism. The finding sheds new light on decades of debate about how the human brain's language centers may actually be enhanced when faced with two or more languages as opposed to only one. The study was presented at the Society for Neuroscience's annual meeting on October 14-18 in Atlanta, Ga.

The authors from left to right: Ioulia Kovelman, Mark Shalinsky, Laura-Ann Petitto; seated: Melody Berens. (Photo by Joseph Mehling '69)

The researchers used an optical imaging technology called Near Infrared Spectroscopy (or NIRS) as a new "microscope" into the human brain's higher cognitive capacities, and they are among the first to take advantage of this technology in this way. NIRS has been used in the detection of, for example, breast tumors and heart blood flow. The Dartmouth team used NIRS to measure changes in the brain's oxygen levels while people performed specific language and cognitive tasks.

Authors of the study are Mark Shalinsky, former post-doctoral fellow at Dartmouth now a research fellow at Massachusetts General Hospital; Ioulia Kovelman, formerly a Dartmouth graduate student currently a post-doctoral fellow at MIT; Melody Berens, currently a post-doctoral fellow at Dartmouth; and Laura-Ann Petitto, the study's senior scientific director, and professor and chair of the Department of Education at Dartmouth.

"NIRS provides much the same information as functional magnetic resonance imaging or 'fMRI,' but has several advantages over fMRI," says Shalinsky, the study's electro-neurophysiologist who created the analysis programs to use NIRS technology in this new way. NIRS technology is quiet, small and portable. It's only about the size of a desktop computer. It's child friendly, and it tolerates a participant's body movements, which makes it ideal for studying language where participants move their mouths to speak."

The NIRS showed similar increased brain activity across all people—monolinguals and bilinguals—in the brain's classic left-hemisphere language regions when they were speaking in only one language (that is, in "monolingual mode"), involving the left Broca's area and left dorsolateral prefrontal cortex (DLPFC), which are brain areas key to language and verbal working memory, respectively.

Close up view of the NIRS equipment. (Photo by Joseph Mehling '69)
When bilinguals were simultaneously processing each of their two languages and rapidly switching between them (that is, in "bilingual mode"), they showed an increase in brain activity in both the left and the right hemisphere Broca's area, with greater activation in the right equivalent of Broca's area and the right DLPFC. This finding emerged as the key indicator of the brain's bilingual signature.

The researchers examined 20 people ranging from 18 to 30 years old (average age was 21.1 years). Ten participants were monolingual (who spoke only English), and ten were bilingual (who spoke both English and Spanish from around birth). Language processing tasks were given to monolingual people speaking their one language while undergoing NIRS brain recordings. The monolingual speakers' behavioral and brain activity were then compared to the bilingual speakers' behavioral and brain activity while performing identical language processing tasks in "monolingual mode" (that is, in Spanish, and in English) or in "bilingual mode" (that is, when simultaneously processing and rapidly switching between their two languages). The Dartmouth team used the Hitachi ETG-4000 NIRS system.

"For decades, people have wondered whether the brains of bilingual people are different from monolinguals. People also worry that the brains of bilingual children are somehow negatively impacted by early experience with two languages," explains Petitto, who also holds the John Wentworth Endowed Chair in the Social Sciences. "The present findings are significant because they show that the brains of bilinguals and monolinguals are similar, and both process their individual languages in fundamentally similar ways. The one fascinating exception is that bilinguals appear to engage more of the neural landscape available for language processing than monolinguals, which is a very good thing."

The team proposes that bilingual language processing provides a new window into the extent of what nature's neural architecture for language processing could be, if only we used it. Petitto adds, "The irony is that we may find it is the monolingual that is not taking full advantage of the neural landscape for language and cognitive processing than nature could have potentially made available."

She says that this research advances the path for using NIRS brain imaging technology both to understand the neural underpinnings of all human language and especially to discover the secrets of the bilingual brain.

This research is funded by grants to Petitto from the National Institutes of Health and the Dana Foundation.

Sue Knapp | EurekAlert!
Further information:
http://www.Dartmouth.edu

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>