Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find a neural signature of bilingualism

19.10.2006
The team uses infrared light to study the brain

Dartmouth researchers have found areas in the brain that indicate bilingualism. The finding sheds new light on decades of debate about how the human brain's language centers may actually be enhanced when faced with two or more languages as opposed to only one. The study was presented at the Society for Neuroscience's annual meeting on October 14-18 in Atlanta, Ga.

The authors from left to right: Ioulia Kovelman, Mark Shalinsky, Laura-Ann Petitto; seated: Melody Berens. (Photo by Joseph Mehling '69)

The researchers used an optical imaging technology called Near Infrared Spectroscopy (or NIRS) as a new "microscope" into the human brain's higher cognitive capacities, and they are among the first to take advantage of this technology in this way. NIRS has been used in the detection of, for example, breast tumors and heart blood flow. The Dartmouth team used NIRS to measure changes in the brain's oxygen levels while people performed specific language and cognitive tasks.

Authors of the study are Mark Shalinsky, former post-doctoral fellow at Dartmouth now a research fellow at Massachusetts General Hospital; Ioulia Kovelman, formerly a Dartmouth graduate student currently a post-doctoral fellow at MIT; Melody Berens, currently a post-doctoral fellow at Dartmouth; and Laura-Ann Petitto, the study's senior scientific director, and professor and chair of the Department of Education at Dartmouth.

"NIRS provides much the same information as functional magnetic resonance imaging or 'fMRI,' but has several advantages over fMRI," says Shalinsky, the study's electro-neurophysiologist who created the analysis programs to use NIRS technology in this new way. NIRS technology is quiet, small and portable. It's only about the size of a desktop computer. It's child friendly, and it tolerates a participant's body movements, which makes it ideal for studying language where participants move their mouths to speak."

The NIRS showed similar increased brain activity across all people—monolinguals and bilinguals—in the brain's classic left-hemisphere language regions when they were speaking in only one language (that is, in "monolingual mode"), involving the left Broca's area and left dorsolateral prefrontal cortex (DLPFC), which are brain areas key to language and verbal working memory, respectively.

Close up view of the NIRS equipment. (Photo by Joseph Mehling '69)
When bilinguals were simultaneously processing each of their two languages and rapidly switching between them (that is, in "bilingual mode"), they showed an increase in brain activity in both the left and the right hemisphere Broca's area, with greater activation in the right equivalent of Broca's area and the right DLPFC. This finding emerged as the key indicator of the brain's bilingual signature.

The researchers examined 20 people ranging from 18 to 30 years old (average age was 21.1 years). Ten participants were monolingual (who spoke only English), and ten were bilingual (who spoke both English and Spanish from around birth). Language processing tasks were given to monolingual people speaking their one language while undergoing NIRS brain recordings. The monolingual speakers' behavioral and brain activity were then compared to the bilingual speakers' behavioral and brain activity while performing identical language processing tasks in "monolingual mode" (that is, in Spanish, and in English) or in "bilingual mode" (that is, when simultaneously processing and rapidly switching between their two languages). The Dartmouth team used the Hitachi ETG-4000 NIRS system.

"For decades, people have wondered whether the brains of bilingual people are different from monolinguals. People also worry that the brains of bilingual children are somehow negatively impacted by early experience with two languages," explains Petitto, who also holds the John Wentworth Endowed Chair in the Social Sciences. "The present findings are significant because they show that the brains of bilinguals and monolinguals are similar, and both process their individual languages in fundamentally similar ways. The one fascinating exception is that bilinguals appear to engage more of the neural landscape available for language processing than monolinguals, which is a very good thing."

The team proposes that bilingual language processing provides a new window into the extent of what nature's neural architecture for language processing could be, if only we used it. Petitto adds, "The irony is that we may find it is the monolingual that is not taking full advantage of the neural landscape for language and cognitive processing than nature could have potentially made available."

She says that this research advances the path for using NIRS brain imaging technology both to understand the neural underpinnings of all human language and especially to discover the secrets of the bilingual brain.

This research is funded by grants to Petitto from the National Institutes of Health and the Dana Foundation.

Sue Knapp | EurekAlert!
Further information:
http://www.Dartmouth.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>