Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find a neural signature of bilingualism

19.10.2006
The team uses infrared light to study the brain

Dartmouth researchers have found areas in the brain that indicate bilingualism. The finding sheds new light on decades of debate about how the human brain's language centers may actually be enhanced when faced with two or more languages as opposed to only one. The study was presented at the Society for Neuroscience's annual meeting on October 14-18 in Atlanta, Ga.

The authors from left to right: Ioulia Kovelman, Mark Shalinsky, Laura-Ann Petitto; seated: Melody Berens. (Photo by Joseph Mehling '69)

The researchers used an optical imaging technology called Near Infrared Spectroscopy (or NIRS) as a new "microscope" into the human brain's higher cognitive capacities, and they are among the first to take advantage of this technology in this way. NIRS has been used in the detection of, for example, breast tumors and heart blood flow. The Dartmouth team used NIRS to measure changes in the brain's oxygen levels while people performed specific language and cognitive tasks.

Authors of the study are Mark Shalinsky, former post-doctoral fellow at Dartmouth now a research fellow at Massachusetts General Hospital; Ioulia Kovelman, formerly a Dartmouth graduate student currently a post-doctoral fellow at MIT; Melody Berens, currently a post-doctoral fellow at Dartmouth; and Laura-Ann Petitto, the study's senior scientific director, and professor and chair of the Department of Education at Dartmouth.

"NIRS provides much the same information as functional magnetic resonance imaging or 'fMRI,' but has several advantages over fMRI," says Shalinsky, the study's electro-neurophysiologist who created the analysis programs to use NIRS technology in this new way. NIRS technology is quiet, small and portable. It's only about the size of a desktop computer. It's child friendly, and it tolerates a participant's body movements, which makes it ideal for studying language where participants move their mouths to speak."

The NIRS showed similar increased brain activity across all people—monolinguals and bilinguals—in the brain's classic left-hemisphere language regions when they were speaking in only one language (that is, in "monolingual mode"), involving the left Broca's area and left dorsolateral prefrontal cortex (DLPFC), which are brain areas key to language and verbal working memory, respectively.

Close up view of the NIRS equipment. (Photo by Joseph Mehling '69)
When bilinguals were simultaneously processing each of their two languages and rapidly switching between them (that is, in "bilingual mode"), they showed an increase in brain activity in both the left and the right hemisphere Broca's area, with greater activation in the right equivalent of Broca's area and the right DLPFC. This finding emerged as the key indicator of the brain's bilingual signature.

The researchers examined 20 people ranging from 18 to 30 years old (average age was 21.1 years). Ten participants were monolingual (who spoke only English), and ten were bilingual (who spoke both English and Spanish from around birth). Language processing tasks were given to monolingual people speaking their one language while undergoing NIRS brain recordings. The monolingual speakers' behavioral and brain activity were then compared to the bilingual speakers' behavioral and brain activity while performing identical language processing tasks in "monolingual mode" (that is, in Spanish, and in English) or in "bilingual mode" (that is, when simultaneously processing and rapidly switching between their two languages). The Dartmouth team used the Hitachi ETG-4000 NIRS system.

"For decades, people have wondered whether the brains of bilingual people are different from monolinguals. People also worry that the brains of bilingual children are somehow negatively impacted by early experience with two languages," explains Petitto, who also holds the John Wentworth Endowed Chair in the Social Sciences. "The present findings are significant because they show that the brains of bilinguals and monolinguals are similar, and both process their individual languages in fundamentally similar ways. The one fascinating exception is that bilinguals appear to engage more of the neural landscape available for language processing than monolinguals, which is a very good thing."

The team proposes that bilingual language processing provides a new window into the extent of what nature's neural architecture for language processing could be, if only we used it. Petitto adds, "The irony is that we may find it is the monolingual that is not taking full advantage of the neural landscape for language and cognitive processing than nature could have potentially made available."

She says that this research advances the path for using NIRS brain imaging technology both to understand the neural underpinnings of all human language and especially to discover the secrets of the bilingual brain.

This research is funded by grants to Petitto from the National Institutes of Health and the Dana Foundation.

Sue Knapp | EurekAlert!
Further information:
http://www.Dartmouth.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>